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Abstract.
Intelligent tutoring systems customize the learning experiences of students. Be­

causeno two students haveprecisely thesame learning history, traditional analytic
techniques are not appropriate. This paper shows how to compare the learning his­
tories of students and how to compare groups of students in different experimental
conditions. A class of randomization tests is introduced and illustrated with data
from theAnimalWatch ITS project for elementary school arithmetic.
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Interacting with an intelligent tutoring system is likeconversing with acar salesper­
son: No two conversationsare thesame, yet each goes in roughly thesamedirection: the
salesperson establishesrapport, findsout what you want, sizesup your budget, and even­
tually makes, or doesn’t make, asale. Within and between dealerships, somesalespeople
are better than others. Customers also vary, for example, in their budget, how soon they
intend to purchase, whether they have decided on a particular model, and so on. Of the
customers who deal with a salesperson, some fraction actually purchase a car, so one
can compare salespeople with a binomial tests or something similar. Indeed, any num­
ber of sound statistical comparisonscan bedrawn between theoutcomesof dealing with
salespeople: total revenues, distributionsof revenuesover car model classes, interactions
between theprobability of saleand model classes, and so on.

Similarly, one can evaluate intelligent tutoring systems on outcome variables: the
number of problemssolved correctly, or the fraction of studentswho passaposttest, and
so on. Consider the AnimalWatch tutoring system for arithmetic. Students between the
agesof 10 and 12 worked on customized sequencesof word problemsabout endangered
species. They wereprovided with multimediahelp when they madeerrors [1]. Theword
problemsprovided instruction in nine topics, including addition, subtraction, multiplica­
tion and division of integers, recognizing the numerator and denominator of a fraction,
adding and subtracting likeand unlike fractionsand mixed numbers, and so on. Previous
analyses focused on outcome measures such as topic mastery estimates maintained by
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the student model component of the AnimalWatch ITS. These analyses indicated that
studentswho received rich multimediahelp when they madeerrors (theHeuristic condi­
tion) had higher topic mastery scores than peers who worked with a text only version of
the ITS which provided only simple text messages (e.g., "try again") [2].

Outcome variables can provide evidence of learning from an ITS. However, they
tell us nothing about the individual student’s experience while working with the tutor.
Students might reach similar outcome points via quite different sequences of problems,
or learning trajectories, someof which might bemoreeffective, efficient or well­matched
to particular students. Thus, if our interest is in the process of learning, then we should
evaluate the efficacy and other attributes of sequences of problem­solving interactions.
The challenge is that, by definition, each student’s learning experience with an ITS is
unique. For example, theAnimalWatch ITSincludesmorethan 800 word problems, most
of which can be customized in real time to individual students. Those who worked with
AnimalWatch took unique paths through an extremely large problem space, and each
step in their trajectories depended on their prior problem solving history [3].

One approach to evaluating student progress and performance while working with
an ITS has been to examine the reduction in the number of errors across sequences of
problemsinvolving similar skills [4,5]. Unfortunately, theutility of thisapproach isoften
limited due to the lack of sufficient problems of the same type and difficulty that can
be used to form meaningful sequences. A more serious problem is that the elements
of interactions in a problem sequence are not independent; the next problem a student
sees depends on his or her unique learning history. This means that we cannot treat the
student’sexperienceasasampleof independent and identically distributed problems, nor
can we rely on traditional statistical methods (analysis of variance; regression) that treat
it as such [6].

In thispaper, wepresent alternativemethods to compare the learning experiencesof
students, and experimental groups of students. We illustrate these methods with student
problem solving data from theAnimalWatch project; however, they aregeneral.

1. Comparing Experiences

The first step is to create a multidimensional representation of the student’s experience
asasequenceof dependent interactions. For instance, thestudent might attempt problem
1, fail, get a hint, fail again, get another hint, succeed, and then move onto problem
17, which the tutor judges to the best next problem, given the observed sequence of
interactions. Let Si = x1, x2, . . . , xn be the sequence of interactions for student i. In
general the set of interaction types is quite large; for instance, the AnimalWatch tutor
includes 807 problems, each of which is instantiated with a variety of operands; and 47
distinct hint types. Interactions have attributes in addition to their type. They take time,
they are more or less challenging to the student, they succeed or fail, and so on. In fact,
interaction xi is a vector of attributes like the one in Figure 1. This is the 5th problem
seen by student x32A4EE6, it involves adding two integers, it is moderately difficult,
it required 142 seconds and one hint to solve correctly, and so on. The experience of
a student is represented by a sequence of structures like this one. While our examples
all focus on information about problems (topic, difficulty, time), the approach can be
generalized to other characterizationsof students’ experience, such as the frequency and
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PROBLEM­ID: 675 , NUMBER: 5 , STUDENT: #<STUDENT x32A4EE6> ,
TOPIC: ADDINTEGERS , OP1: 8155 , OP2: 2937 , DIFFICULTY : 4.3 3
NUMSKILLS: 2 , TIME­REQUIRED: 142 , NTHINTOPIC: 3 ,
HINTS: (<HIN T x3646D76> )

Figure1. A singleproblem instancepresented to astudent by AnimalWatch

content of hints. That is, we identity aspects of interaction with the ITS that we want to
consider in an evaluation and represent these in thevector xi.

Although the problem instance in Figure 1 is unique, it belongs to several prob­
lem classes; for instance, it belongs to the class of ADD­INTEGERS problems with
DIFFICULT Y = 4.33 . Such class attributes define problem classes. Another exam­
ple is the number of different math skills required to solve problems in the class. Other
classattributesarederived from theproblem instances in theclass. An important derived
attribute is empirical difficulty, which we define as the number of problems in a class
answered incorrectly divided by the total number of attempted problems in that class. In
Section 6 wewil l see that empirical difficulty often differs from apriori estimatesby the
ITS developers of thedifficulty of problems.

Once we have created vectors to represent the elements of interest of the student’s
interaction with the ITS, we can compare students. We want to perform several kinds of
analysis:

• Compare two students’ experiences; for example, assess whether one student
learns morequickly, or is exposed to awider rangeof topics, than another.

• Form clusters of students who have similar experiences; for example, cluster stu­
dents according to the rates at which they proceed through the curriculum, or
according to the topics they find particularly difficult.

• Compare groups of students to see whether their experiences are independent of
the grouping variables; for example, tutoring strategies are different if students
havesignificantly different experiences under each strategy.

2. General Method

Thesekindsof analysisaremadepossibleby the following method. Wewil l assumethat
each problem instancex seen by astudent is amember of exactly oneproblem classχ.

1. Re­code each student experience Si = x1, x2, . . . xn as a sequence of problem
classesσi = χi, χj , . . . χm.

2. Deriveoneor more functionsφ(σi, σj) to compare two problem class sequences
(i.e., two students’ experiences). Typically, φ returns a real­valued number.

3. Students may be grouped into empirical clusters by treating φ as a similarity
measure. Groupsof students(e.g., thosein different experimental conditions) can
be compared by testing the hypothesis that the variability of φ within groups
equals thevariability between groups.

Expanding on the last step, let Gi be a group comprising ni sequences of problem
2classes (onesequenceper student), so thereareCi = (ni − ni)/2 pairwisecomparisons

of sequences. If wemergegroupsGi andGj , thereareCi∪j = ((ni+nj)2−(ni+nj))/2 
pairwisecomparisons of all sequences.
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Let �
δ(i) = φ(a, b) (1)

a,b∈Gi 

be the sum of all pairwise comparisons within group Gi. If groups Gi and Gj are not
different, then onewould expect

(δ(i) + δ(j))/(Ci + Cj)Δ(i, j) = = 1.0 (2)
δ(i ∪ j)/Ci∪j 

This equation generalizes to multiple groups in the obvious way: If there are no
differences between the groups then the average comparison among elements in each
group wil l equal theaveragecomparison among elements of theunion of all thegroups.

3. Hypothesis Testing by Randomization

We introduce randomization testing for two groups, though it generalizes easily to mul­
tiple groups. In the previous section we introduced a test statistic Δ(i, j) and its ex­
pected value under a null hypothesis, but not its sampling distribution. The sampling
distribution of a statistic under a null hypothesis H0 is the distribution of values of the
statistic if H0 is true. Typically H0 is a statement that two things are equal, for instance,
H0 : Δ(i, j) = 1. If the test statistic has an improbable value according to the sampling
distribution then H0 probably is not true. We reject H0 and report the probability of the
test statistic given H0 as ap value.

Supposeonehasastatistic that comparestwo groups i and j, such asΔ(i, j) (Eq. 2).
Under thenull hypothesisthat thegroupsarenot different, an element of onegroup could
be swapped for an element of the other without affecting the value of the statistic very
much. Indeed, theelementsof thegroupscould bethoroughly shuffled and re­distributed
to pseudosamples i∗ and j∗ (ensuring that thepseudosamples have thesamesizes as the
original samples i and j) and the statistic could be recomputed for the pseudosamples.
Repeating this process produces a distribution of pseudostatistics which serves as the
sampling distribution against which to compare the test statistic.

Randomization is non­parametric, it makes no assumptions about the distributions
from which samples are drawn; and it can be used to find sampling distributions for any
statistic.

The hypothesis testing procedure for comparing two groups, i and j, of students,
then, is to derive the test statistic Δ(i, j) as described earlier, then throw all the students
into a single group, shuffle them, draw pseudosamples i∗ and j∗, compute Δ∗(i∗, j∗) 
and increment a counter c if Δ∗(i∗, j∗) > Δ(i, j). After repeating the process k times,
thep value for rejecting thenull hypothesis that thegroups areequal is c/k.

3.1. About the Implementation

Comparing each student to every other isquadratic, repeating theprocess for each pseu­
dosampleadds a linear factor. Notealso that thedenominator of Eq. 2 is calculated only
once; only the numerator changes when we draw pseudosamples. In practice, one can
make the procedure run very fast by not actually drawing pseudosamples from the orig­
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inal sample but, rather, shuffling pointers into the original sample. This requires littl e
more space than it takes to store the original samples and keeps the space complexity of
thealgorithm very low. Theanalysesin theexamplesbelow involveafew dozen students
in each of two samplesand 1000 pseudosamples, and none takesmore than two minutes
on aMacintosh G4.

4. Example: Comparing theprogress of students in different conditions

Suppose we want to assess the distribution of topics encountered by a student after
ten, twenty, ... problems, and compare students to see whether they progress through
the topics in the same way. As noted earlier, AnimalWatch presented nine topics. Let
si,t = n1, n2, ...n9 represent the number of problems on each of nine topics encoun­
tered by student i at time t. Said differently, we imagine the progress of the student at
time t as a point in nine­dimensional space. If we measure the progress of the student at
regular intervals, we get a trajectory through nine­dimensional space. Two students may
be compared by summing the Euclidean distances between corresponding points in this
space: � �

φ(σa, σb) = (ni,a − ni,b)2 (3)
t=0,10,20,... i=1,2,...9 

We used the randomization method to compare progress for students in the Text
and Heuristic experimental conditions, described earlier. We looked at each student after
10, 20, ..., 90 problems and recorded how many problems on each of nine topics the
student solved. Students were compared with the function φ in Eq 3. The test statistic
Δ(Text, Heuristic) = 0.981 was rejected only twice in 1000 randomization trials, so
we can reject the null hypothesis that progress through the nine­topic problem space is
thesame for students in theText and Heuristic conditions, with p = .002.

It is one thing to test whether student in different experimental groups are different,
another to visualize how they are different. In the previous example the trajectories are
in a nine­dimensional space. However, the progress of each student through this space
may be plotted as follows: Let P(s, t, c) be the proportion of problems in problem class
c solved correctly by student s in the first t problems seen by that student. For instance,
P(1,30,addintegers)= .6 means that of theaddintegersproblems in thefirst 30 problems
seen by student 1, 60 % were solved correctly. Let N (s, t, p) denote the number of
problem classes for which P(s, t, c) > p. For example, N (1, 30, .5) = 2 means that in
the first 30 problems, student 1 encountered two problem classes for which she solved
50% of theproblemscorrectly. Let VN (s, p) = [N (s, 10, p), N (s, 20, p), N (s, 30, p)...],
that is, the sequence of values of N for student s after 10, 20, 30... problems. Such a
sequence represents progress for a student in the sense that it tells us how many classes
of problems astudent has solved to somecriterion p after 10, 20, 30... problems.

To visualize theprogressof astudent onemay simply plot VN (s, p), and to compare
groups of students one may plot the mean VN (s, p) for students within groups. This
is done in Figure 2. The vertical axis is mean N (s, t, p) averaged over students in a
group, thehorizontal axis is t, thenumber of problemsattempted by thestudents. Here, t 
rangesfrom 10 to 100 problems. Thehigher of thetwo linescorrespondsto theHeuristic
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condition, thelower to Text. Oneseesthat on average, astudent in theHeuristic condition
mastersroughly fivetopicsto thecriterion level of 50% in thefirst 100problems, whereas
students in the Text condition master only 3.5 topics to this level in the same number of
attempts. Thesecurvesalso can becompared with our randomization procedure, and are
significantly different.

Figure2. Mean number of problem classesmastered to the50% criterion level asa function of thenumber of
problems attempted by thestudents. Upper curve is Heuristic condition, lower is Text.

5. Example: Comparing thedistributio n of problems seen by students in different
conditions

Wewil l usedata from theAnimalWatch project to illustrate theapproach. Studentswere
taught about ninearithmetic topics. Each student can thereforeberepresented asavector
of nine numbers, each representing the number of problems on a given topic that the
student solved correctly, ordered on thebasisof our empirical difficulty measurederived
above (although thevector might represent other attributes of interest).

Let σm(i) be the ith value in the vector for student m. Two students may be com­
pared by

φ(σm, σn) = abs(σm(i)− σn(i)) (4)

that is, the sum of the absolute differences in the numbers of problems solved correctly
on each topic.

In this example, we wil l compare the learning experiences of students who worked
with two different versions of the AnimalWatch ITS: Some students worked with a ver­
sion that provided only minimal, text­based help in response to errors (Text). Other stu­
dentsworked with aversion that provided studentswith rich, multimediahintsand expla­
nations (Heuristic). Figure 3 shows the mean number of problems on each topic solved
by students in the Text and Heuristic conditions, with 95% confidence intervals around
themeans. Onemight betempted to runatwo­way analysisof varianceon thesedatawith
Topic and Condition asfactors, but remember that theproblemsseen by astudent arenot
independent, the tutor constructed a unique sequence of problems for each student, and
the cell sizes are quite unequal, all of which violate assumptions of the analysis of vari­
ance. Therandomization method makesno such assumptions. Wecompared theText and
Heuristic conditionswith therandomization proceduredescribed earlier. Thetest statistic
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Δ(Text, Heuristic) = .963 was exceeded in every one of 1000 randomization trials,
so we can reject the null hypothesis that the conditions are equal with p < .001. Thus,
we conclude that, even though students had unique experiences with the ITS, those who
received multimedia help in response to errors solved more problems correctly, across
all topics, relative to students who received only limited, text­based help.

The total number problems solved by students was not the same in the Text and
Heuristic conditions. This might account for the significant result. We can run the anal­
ysis differently, asking of each student what fraction of the problems she saw in each
problem class she answered correctly. In this case we are comparing probabilities of
correct responses, not raw numbers of correct responses. Repeating the randomization
procedure with this new function for comparing students still yields a significant result,
albeit less extreme: The test statistic Δ(Text, Heuristic) = .973 was exceeded in 950
of 1000 trials, for ap valueof 0.05.

By contrast, the p value for a comparison of girls and boys was 0.49, there is no
reason to reject thenull hypothesis that girlsand boyscorrectly solved thesamenumbers
of problems on all topics.

Figure3. Mean correct number of problems for Heuristic and Text conditions.

6. Example: Change in Empirica l Difficult y

As a final example of methods for comparing student experiences, we return to the idea
of empirical difficulty, introduced in Section 1. We define the empirical difficulty of a
problem as the number of unsuccessful attempts to solve it divided by the total number
of attempts to solve it. Figure 4 shows the empirical difficulty of the nth problem for
the Heuristic and Text groups. That is, the horizontal axis represents where a problem
is encountered in a sequence of problems, the vertical axis represents the proportion of
attempts to solvethat problem which failed. Regression linesareshown for theHeuristic
and Text groups. It appears that the empirical difficulty of problems in the Heuristic
group is lower than that of the Text group, or, said differently, Heuristic students solved
a higher proportion of problems they encountered. This appears to be true wherever the
problems wereencountered during thestudents’ experience.

We can test this hypothesis easily by randomizing the group to which students be­
long to get a sampling distribution of mean empirical problem difficulty. This result is
highly significant: In 1000 randomized pseudosamples the mean difference in problem
difficulty between Heuristic and Text, 0.094, wasnever exceeded. Onealso can random­
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ize the group to which students belong to get a p value for the difference between the
slopes of the regression lines. This p value is .495, so there is no reason to reject the
hypothesis that the regression lines have equal slope. In other words, the change in em­
pirical problem difficulty as a function of when the problem is encountered, a slightly
positive relationship, is thesame for Heuristic and Text students.

Figure4. Empirical problem difficulty as a function of when problems areencountered.

In conclusion, wedemonstrated that students’ experienceswith an ITSaresequences
of multidimensional, dependent observations, and yet they are not beyond the reach of
statistical analysis. We showed how to represent students’ learning trajectories and how
to test hypotheses about them with randomization methods.
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