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1 I n t r o d u c t i o n  

The two key features of Deliberation Scheduling and 
Anytime Algorithms are the duration of the computation 
and the resulting quality. Clearly, quality can be difficult 
to define and highly dependent on the domain. Dura- 
tion, on the other hand, seems straightforward: how long 
the computation takes. But on what processor? Should 
the processor mat ter?  What  code counts in the compu- 
tation? How is that  code's duration modeled? These 
questions are addressed in this paper. 

Our work on duration modeling stems from our research 
on simulation systems for real-time planning [1]. One 
such system is PHOENIX [2], which simulates forest fires 
burning in Yellowstone National Park. Because the fire- 
fighters plan how to put  out the fire while the fire is 
burning, there is time-pressure on their reasoning, and 
they may need to think about how much planning to 
do. The mechanism by which PHOENIX integrates the 
thinking of agents with the discrete-event simulation of 
the environment is to advance the simulation clock de- 
pending on the amount of CPU time used by the agent. 
For example, the default setting in PHOENIX is that  one 
CPU-second corresponds to five minutes of simulation 
time. 

This CPU-time approach is standard among AI simu- 
lators for reai-time planning [1]. Unfortunately, there 
are problems with using CPU time, all of which we have 
suffered while using PHOENIX: 

Variance: Small, random variations in the measure- 
ment of CPU time result in random variation in 
the behavior of the simulation. This can make it 
difficult to replicate a particular simulation state, 
whether for debugging, demonstration, or experi- 
mentation. 

Plat form-dependence:  The simulation behaves dif- 
ferently from one Lisp platform to another. This ex- 
acerbates the variance problem and puts unwanted 
noise in data  from large experiments in which trials 
are run on many different machines. 

Interference: Adding code to record or print data, say 
for debugging, demonstrations, or to measure qual- 
ity, affects the CPU time of the code, which in turn 
affects the behavior of the simulation. This is some- 
thing like the Heisenberg principle in physics: the 

act of observing the code affects the code. While the 
Heisenberg principle may be true in the real world, 
it is hardly convenient for experimental scientists. 

Essentially, all these troubles are "noise" tha t  comes 
from using CPU time. Consequently, we looked for an- 
other way of measuring how much computat ion an agent 
has done, one that  gives us replicability of simulation 
states. 

2 D u r a t i o n  M o d e l i n g  

Our basic idea for modeling a computation's  duration is 
to advance the clock by some amount for each "primi- 
tive" that  is executed. If these increments depend only 
on the code that  is executed and not the Lisp platform, 
the duration of the code will be invariant. What  remains 
is to decide what a primitive is and how the increments 
are determined. 

2.1 Low-level  M o d e l s  

A "low-level" primitive is a primitive of the Common 
Lisp language, such as car ,  +, or subs t .  By using low- 
level models, you can retain much of the flavor of the 
CPU-time approach, because the duration is tied quite 
tightly to exactly what code executes. We have imple- 
mented a language in which every primitive of Com- 
mon Lisp is shadowed, so that  the functions have the 
same semantics but  also advance the clock by a certain 
amount. (We call this language Timed Common Lisp 
or TCL.)  You program in T C L  exactly as in Common 
Lisp-- the  two are essentially the same from the program- 
mer's viewpoint. The difference is tha t  T C L  primitives 
advance the clock. 

Of course, we will not want to advance the clock by the 
same amount for each T C L  primitive. We will not even 
want to advance it in the same way. For example, ca r  
should advance the clock by a small constant; most prim- 
itives fall into this category, although the constants are 
all different. Functions like +, on the other hand, should 
advance the clock depending on the number of argu- 
ments they get. (The duration of arithmetic primitives 
can also depend on the types of the arguments, although 
the current T C L  implementation does not do so.) The 
duration of a function like member, which searches a list 
for some element, should depend on the length of the list. 
For a function like make-a r ray ,  the duration should de- 
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pend on the number  of elements in the array. 

In implementing T C L ,  we have defined about  two dozen 
classes of such duration models. A duration model is 
some measure of the amount  of work some primitive 
does. This measure is then multiplied by a coefficient 
to yield the actual duration of the primitive with that  
duration model. Durat ion rnodels are entirely analogous 
to the "big-O" notat ion of complexity theory. A con- 
s tant  t ime function like c a r  has a duration model that  
is O(1), while a function like * has a duration model that  
is O(n) where n is the ari ty (number of arguments) of 
the function. The duration model of s o r t  is O(nlogn), 
where n is the number  of arguments to be sorted. 

Given these duration models, a "duration database" is 
then defined. Here are some excerpts: 

(define-cl-primitives 
append append-operations 2 
butlast :length 2 
intersection set-operations 0 
make-array array-dims 2 
ninth :constant 9 
not  : c o n s t a n t  1 
reverse :length 3 
set-difference set-operations 3) 

Each line names a primitive of T C L  (and Common 
Lisp), a class of durat ion model (such as : c o n s t a n t  for 
functions like no t  or n i n t h )  and the coefficient to be 
used (such as 1 for no t  or 9 for n in th ) .  

These coefficients are arbitrary.  Any set of values will 
give us the desired noise-free measure of duration. How- 
ever, in our laboratory,  we have a set of coefficients de- 
fined to correspond roughly with the times for these func- 
tions on the Texas Ins t ruments  Explorer, tm so tha t  we 
can duplicate the behavior of the PHOENIX simulator. 
Other  researchers may choose to duplicate the t iming of 
other platforms on which they are currently measuring 
CPU time. T C L  will also provide tools to help with 
determining what  coefficients to use. 

By using these low-level models, T C L  can report  num- 
bers tha t  look like CPU time, but  are noise-free and can 
be replicated on any Common Lisp platform, since T C L  
runs on any Common Lisp. 

2.2 H i g h - l e v e l  M o d e l s  

The fundamental  operations of an AI program need not 
be reduced to the primitives of Common Lisp--we can 
define duration models at a higher level. For example, a 
chess-playing program might define "evaluating a board 
position" or "generating a move" as a fundamental  "cog- 
nitive primitive." The duration of some computat ion 
is then O(f(n, m)), where m and n are the number  of 
these higher level primitives; for example, m could be 
the number  of board  positions evaluated and n could be 

the number  of moves generated, and f is some arbi t rary  
function of those numbers,  determining the durat ion of 
a move. 

This is a natural  approach to modeling the duration of 
anytime algorithms, since many  anyt ime a/gorithms use 
iterative improvement or similar approaches where there 
is a natural  "unit" of duration (and quality). By encap- 
sulating each iteration as a T C L  primitive with its own 
duration model, we can reduce the overhead of T C L  (see 
section 4) and have a program whose duration is simpler 
and easier to understand. I t ' s  hard to look at a CPU 
time and know tha t  i t 's  "right," but  if an i terative im- 
provement algorithm reports  a durat ion of, say, 70, and 
each iteration takes 5 t ime units, it 's pre t ty  clear what ' s  
going on. 

Of course, as with the primitives of Common  Lisp, we 
don ' t  want to confine ourselves to constant- t ime models. 
T C L  allows duration models to be defined as arbi t rary  
functions of the primitive 's  arguments  and the compu- 
tat ional  s tate of the system. The model can even be 
pseudo-random, if tha t ' s  desirable. To achieve our goal 
of replicability, the model need only be a deterministic 
computat ion.  

An agent doing deliberation scheduling needs a simple, 
declarative representat ion of how long thinking will take. 
High-level cognitive primitives can help here, especially 
since the duration models are stored in a T C L  database  
tha t  is accessible to the agent. If  the duration model 
is not a simple constant,  the agent can still t ry  to pre- 
dict how long the computat ion will take by guessing at 
the aspects of the simulation s tate  used by the duration 
model. For example, it might  be reasonable to guess 
at the number  of board positions tha t  will be evaluated 
during a move. I t  certainly seems easier to guess at tha t  
number  than  to guess at the amount  of CPU t ime tha t  
the move would take. Of course, a historical approach 
can also be used, where the durations tha t  occurred on 
previous runs are used for prediction; these historical 
durations can also be stored in the T C L  database.  

Using a high-level model also allows for a new class of 
experiments in which the durations of different cognitive 
primitives are independently controlled. For example,  if 
"move generation" and "board evaluation" are two cog- 
nitive primitives in a chess agent, we can modify the 
duration model for one primitive independently of the 
other to see the effect on performance.  In principle, one 
can also alter the duration model for c a r  independently 
of tha t  of cdr ,  but  there are no interesting research ques- 
tions posed by tha t  manipulation.  By moving to high- 
level primitives, one can ask sensible questions about  
durat ion/qual i ty  tradeoffs. 
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2.3 I n t e g r a t i n g  M o d e l s  

High-level and low-level duration models are not mutu- 
ally exclusive. In the call-tree of a program, the dura- 
tions of higher functions can either be determined by 
the code they call, even down to the lowest Lisp prim- 
itives, or they can be determined by independent du- 
ration models. This boundary is analogous to the the 
AIB distinction described by Cooper et al. [3], where the 
cognitive primitive is above the line (A) while the al- 
gorithm is below the line (B)- - the  line demarcates the 
boundary between theoretical commitment and imple- 
mentation detail. T C L  makes no distinctions between 
the levels of primitives and so can easily admit a mixture 
of both ways to model duration. For example, uninter- 
esting sections of the code can be given deterministic 
durations by using the built-in T C L  durations of low- 
level primitives, or they can be given simple high-level 
durations, such as a constant. Meanwhile, interesting 
sections of the code--code whose behavior is anytime 
or involves similar tradeoffs between deliberation quality 
and speed--can be given more exacting duration models. 

3 N o n - i n t e r f e r i n g  C o d e  

So far, we've described how the clock advances as each 
primitive executes. What  if we don't  want the clock 
to advance? Suppose, for example, we put  in a p r i n t  
statement either to debug or demonstrate the program's 
behavior. We don' t  want tha t  insertion to affect the be- 
havior of the simulation. With a CPU-time approach, 
it can be hard to turn off the clock, but  with T C L  it's 
trivial. Any code that  shouldn't  advance the clock is 
wrapped in a f r e e  form. For example, the following re- 
ports what the agent is thinking about, without affecting 
its thoughts or their duration: 

(defun think () 

(free (format t "Thinking about ~s-~" 
current-thought)) 

This ability is particularly important  in anytime algo- 
rithms and deliberation scheduling, since we will want 
to insert code to measure and report  the quality of the 
result, yet we don' t  necessarily want that  code to affect 
the algorithm's behavior. For example, measuring the 
quality of a tour in the TSP (Traveling Salesman Prob- 
lem) might be a non-trivial computation that  is entirely 
separate from the tour-improvement computation and 
therefore should be off the clock. Even if we want the 
quality computation to be on the clock, we may also be 
saving the (duration,quality) pair to a file or database, 
for future reference in deliberation scheduling. T C L  al- 
lows those operations to be done without interfering with 
the simulation's behavior. 

4 O v e r h e a d  

What  are the disadvantages of using T C L ?  There are no 
notational disadvantages, since it looks just like Com- 
mon Lisp and requires no commitment to a particular 
agent- or cognitive-architecture. The advancing of the 
clock, however, does entail an inevitable overhead. Quite 
simply, the code is doing more work. Therefore, there 
will be some slowdown of the user's code. 

It's difficult to make any blanket statements about  how 
much slowdown there will be without knowing the kind 
of code and duration models. The speed will depend 
partly on the level of the primitives tha t  the code uses. 
For example, if the code is "low-level" code that  does a 
lot of operations like ca r  and cdr,  each of those primi- 
tives now has an associated increment of the clock. For 
such simple functions, incrementing the clock is a signif- 
icant slowdown. On the other hand, a function like s o r t  
is barely slowed down by measuring the size of its input 
(n) and incrementing the clock by cn log n, where c is 
the duration model coefficient. If the user defines cog- 
nitive primitives at a higher level, the overhead may be 
even less. In addition, unfortunately, the speed also de- 
pends on the quality of the Lisp compiler--a  good com- 
piler can open-code much of the incrementing code using 
type-specific arithmetic instructions. 

We can, however, take timings of s tandard benchmark 
programs, to get an idea of how much T C L  slows the 
code down. The data  in table 1 were collected using 
Gabriel's benchmarks [4], which are available by anony- 
mous F T P  from the CMU AI archives or by contacting 
us. The first two columns are raw timings (that  is, CPU 
seconds) for the benchmark programs running normally 
in Harlequin Lispworks on a DEC Alpha. Note the dif- 
ference between the entries in the two columns: this is 
the variation that  we want to be rid of by using T C L  
rather than CPU time to define the duration of think- 
ing. The third column reports the raw times for ordinary 
T C L  code, using primitive duration models increment- 
ing a clock at run-t ime3 

The fourth column is just like the third, except that  T C L  
used a code-walker (CW) to combine duration incre- 
ments at compile-time. The code-walker looks for "ba- 
sic blocks" of the p rogram--a  basic block is straight-line 
code, without loops or branches--and tries to compute 
the total duration of the block. This can be done for the 
: c o n s t a n t  and : a r i t y  duration models, which are very 
common. For example, three consecutive computations 
with constant durations of 2, 3 and 5, can be coalesced 
at compile time to a single increment of 10 time units. 
Therefore, the times in the fourth column are less than 
or equal to the corresponding times in the third, repre- 

1Note that all we needed to do to "port" the benchmark 
programs to TCL from CL was to load the programs into a 
different package. The algorithms across a row are exactly 
the same. 
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Table 1: Timing studies on a DEC Alpha running Harlequin Lispworks. Columns 1 and 2 are two runs of the 
benchmarks in ordinary Common Lisp. Columns 3 and 4 are runs of those benchmarks using two versions of T C L ,  
with and without the code walker described in the text. Columns 5 and 6 are columns 3 and 4 divided by the mean 
of columns 1 and 2, and therefore report  the relative slowdown of using T C L .  

raw CL raw TCL relative T C L  
1st run 2nd run w/o  CW w / C W  w/o  CW w / C W  

boyer 1.182 1.142 3.033 2.515 2.6 2.2 
browse 1.034 1.103 4.045 2.686 3.8 2.5 
ctak 0.079 0.072 0.147 0.100 1.9 1.3 
dderiv 0.288 0.322 0.359 0.307 1.2 1.0 
deriv 0.338 0.335 0.416 0.347 1.2 1.0 
destru-mod 0.118 0.120 0.303 0.140 2.5 1.2 
destru 0.124 0.120 0.298 0.151 2.4 1.2 
div2 0.273 0.308 0.597 0.339 2.1 1.2 
fft-mod 1.413 1.326 1.871 1.382 1.4 1.0 
fit 1.949 2.143 2.522 1.980 1.2 1.0 
frpoly 2.626 2.562 4.050 3.283 1.6 1.3 
puzzle-mod 1.474 1.076 1.876 1.357 1.5 1.1 
puzzle 1.195 1.089 1.845 1.307 1.6 1.1 
stak 0.113 0.112 0.184 0.146 1.6 1.3 
tak-mod 0.183 0.186 0.670 0.430 3.6 2.3 
tak 0.184 0.188 0.597 0.454 3.2 2.4 
takl 0.106 0.093 0.383 0.260 3.8 2.6 
takr  0.090 0.092 0.214 0.138 2.4 1.5 
traverse 3.674 3.644 8.213 6.683 2.2 1.8 
t r iang-mod 43.718 36.020 53.170 39.892 1.3 1.0 
tr iang 15.741 16.043 33.002 19.452 2.1 1.2 

senting the savings due to compile-time code-walking. 

The third pair of columns is the speed of T C L ,  with and 
without the code-walking, relative to the mean CL time. 
For example,  the 2.2 in the upper  right of the table is 
the speed of T C L  with the code-walker (2.515) divided 
by the mean of 1.182 and 1.142. This da ta  is from just 
six runs, and, because of the variance in measuring CPU 
times, we would have to collect much more da ta  to get 
very precise estimates.  Nevertheless, we can conclude 
tha t  (1) variance in measuring CPU time is indeed a 
problem, and (2) the cost of using T C L  appears  to be 
20 to 120 percent,  depending on the benchmark program. 
Naturally, we hope tha t  realistic AI programs will tend 
more towards the lower end of the range. 

5 M E S S  

We have re-implemented PHOENIX using a simulation 
substrate  called MESS (Multiple Event Stream Simu- 
lator), of which T C L  is a part .  We describe MESS 
as a simulation substra te  because it makes no domain 
commitment .  Instead,  it works with abstractions called 
"events," "event streams" and "activities," among oth- 
ers. One builds a simulation environment in MESS by 
defining the events tha t  happen,  thereby changing the 
s tate  of the world, and defining the event s treams tha t  

produce those events. The MESS substrate takes care of 
synchronizing all the events so that the simulation un- 
folds in the correct way, with processes interacting as 
they should. 

The implementer of a simulation uses the built-in event 
classes and event streams of MESS by inheriting and 
defining methods for CLOS (Common Lisp Object Sys- 
tem) generic functions. For example, the realize 
method implements the semantics of the occurrence of 
an event. A user typically must define that method for 
events that are unique to the new simulation. Another 
example is the pop method of event streams, which cause 
them to yield a new event upon demand; the user can 
extend or modify the implementation of event streams 
by defining that method on a new event-stream class. 

One kind of event stream is a thinking event stream, 
which are used to implement deliberative agents. It is 
an event stream in which the interval between events is 
determined by the amount of thinking done by the agent. 
TCL allows us to define thinking event streams that 
have deterministic behavior. MESS allows deliberative 
agents to be smoothly integrated into a discrete event 
simulation, with the agent events (sensor and effector 
actions) to be correctly interleaved with other events, 
even those from other agents. 
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Another feature of MESS defines activities, which occur 
over an interval of time, and allows these activities to be 
interrupted by events that occur during that time inter- 
val. For example, an agent's movement can be modeled 
as an activity, which might get interrupted by changes in 
the environment. An agent's thoughts can also be mod- 
eled as an interruptible activity. This feature is particu- 
larly interesting to deliberation scheduling and anytime 
algorithm researchers, because the thinking can be inter- 
rupted by, for example, a timer going off or an event in 
the world that indicates a change in the value of further 
deliberation. 

6 C o n c l u s i o n  

Using the Timed Common Lisp language frees a re- 
searcher from worrying about noise in measuring CPU 
time, from worrying that a new release of the Lisp com- 
piler will cause a change in an agent's behavior or an 
algorithm's time/quality curves, from worrying that the 
system's behavior on an DEC Alpha won't be the same 
as on a SUN SPARCstation, and from worrying that 
adding instrumentation code to collect statistics will 
change the behavior of the simulation. This noise may 
not even be very great; PHOENIX'S variance isn't very 
much, but it is noticeable, and it is enough to pro- 
hibit experiments in which we replicate particular sim- 
ulation states. Therefore, TCL gives us a significant 
advantage over a CPU-time approach. Furthermore, the 
TCL approach allows us to declaratively represent du- 
ration using high-level primitives, so that deliberation 
scheduling becomes easier and allows us more control 
over time/quality tradeoffs. 

Because TCL is integrated with MESS, it can be easily 
used to build deterministic simulation of multiple agents 
acting under time pressure in a complex environment. 
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