
Timed Common Lisp:

Scott D. Anderson
Spelman College

Atlanta, GA
anderson©auc, edu

The Duration of Del iberat ion

Paul R. Cohen
Experimental Knowledge Systems Laboratory

University of Massachusetts at Amherst
cohen©cs, umass, edu

1 I n t r o d u c t i o n

The two key features of Deliberation Scheduling and
Anytime Algorithms are the duration of the computation
and the resulting quality. Clearly, quality can be difficult
to define and highly dependent on the domain. Dura-
tion, on the other hand, seems straightforward: how long
the computation takes. But on what processor? Should
the processor mat ter? What code counts in the compu-
tation? How is that code's duration modeled? These
questions are addressed in this paper.

Our work on duration modeling stems from our research
on simulation systems for real-time planning [1]. One
such system is PHOENIX [2], which simulates forest fires
burning in Yellowstone National Park. Because the fire-
fighters plan how to put out the fire while the fire is
burning, there is time-pressure on their reasoning, and
they may need to think about how much planning to
do. The mechanism by which PHOENIX integrates the
thinking of agents with the discrete-event simulation of
the environment is to advance the simulation clock de-
pending on the amount of CPU time used by the agent.
For example, the default setting in PHOENIX is that one
CPU-second corresponds to five minutes of simulation
time.

This CPU-time approach is standard among AI simu-
lators for reai-time planning [1]. Unfortunately, there
are problems with using CPU time, all of which we have
suffered while using PHOENIX:

Variance: Small, random variations in the measure-
ment of CPU time result in random variation in
the behavior of the simulation. This can make it
difficult to replicate a particular simulation state,
whether for debugging, demonstration, or experi-
mentation.

Plat form-dependence: The simulation behaves dif-
ferently from one Lisp platform to another. This ex-
acerbates the variance problem and puts unwanted
noise in data from large experiments in which trials
are run on many different machines.

Interference: Adding code to record or print data, say
for debugging, demonstrations, or to measure qual-
ity, affects the CPU time of the code, which in turn
affects the behavior of the simulation. This is some-
thing like the Heisenberg principle in physics: the

act of observing the code affects the code. While the
Heisenberg principle may be true in the real world,
it is hardly convenient for experimental scientists.

Essentially, all these troubles are "noise" tha t comes
from using CPU time. Consequently, we looked for an-
other way of measuring how much computat ion an agent
has done, one that gives us replicability of simulation
states.

2 D u r a t i o n M o d e l i n g

Our basic idea for modeling a computation's duration is
to advance the clock by some amount for each "primi-
tive" that is executed. If these increments depend only
on the code that is executed and not the Lisp platform,
the duration of the code will be invariant. What remains
is to decide what a primitive is and how the increments
are determined.

2.1 Low-level M o d e l s

A "low-level" primitive is a primitive of the Common
Lisp language, such as car , +, or subs t . By using low-
level models, you can retain much of the flavor of the
CPU-time approach, because the duration is tied quite
tightly to exactly what code executes. We have imple-
mented a language in which every primitive of Com-
mon Lisp is shadowed, so that the functions have the
same semantics but also advance the clock by a certain
amount. (We call this language Timed Common Lisp
or TCL.) You program in T C L exactly as in Common
Lisp-- the two are essentially the same from the program-
mer's viewpoint. The difference is tha t T C L primitives
advance the clock.

Of course, we will not want to advance the clock by the
same amount for each T C L primitive. We will not even
want to advance it in the same way. For example, ca r
should advance the clock by a small constant; most prim-
itives fall into this category, although the constants are
all different. Functions like +, on the other hand, should
advance the clock depending on the number of argu-
ments they get. (The duration of arithmetic primitives
can also depend on the types of the arguments, although
the current T C L implementation does not do so.) The
duration of a function like member, which searches a list
for some element, should depend on the length of the list.
For a function like make-a r ray , the duration should de-

Anytime Algorithms 11 SIGART Bulletin, Vol. 7, No. 2

pend on the number of elements in the array.

In implementing T C L , we have defined about two dozen
classes of such duration models. A duration model is
some measure of the amount of work some primitive
does. This measure is then multiplied by a coefficient
to yield the actual duration of the primitive with that
duration model. Durat ion rnodels are entirely analogous
to the "big-O" notat ion of complexity theory. A con-
s tant t ime function like c a r has a duration model that
is O(1), while a function like * has a duration model that
is O(n) where n is the ari ty (number of arguments) of
the function. The duration model of s o r t is O(nlogn),
where n is the number of arguments to be sorted.

Given these duration models, a "duration database" is
then defined. Here are some excerpts:

(define-cl-primitives
append append-operations 2
butlast :length 2
intersection set-operations 0
make-array array-dims 2
ninth :constant 9
not : c o n s t a n t 1
reverse :length 3
set-difference set-operations 3)

Each line names a primitive of T C L (and Common
Lisp), a class of durat ion model (such as : c o n s t a n t for
functions like no t or n i n t h) and the coefficient to be
used (such as 1 for no t or 9 for n in th) .

These coefficients are arbitrary. Any set of values will
give us the desired noise-free measure of duration. How-
ever, in our laboratory, we have a set of coefficients de-
fined to correspond roughly with the times for these func-
tions on the Texas Ins t ruments Explorer, tm so tha t we
can duplicate the behavior of the PHOENIX simulator.
Other researchers may choose to duplicate the t iming of
other platforms on which they are currently measuring
CPU time. T C L will also provide tools to help with
determining what coefficients to use.

By using these low-level models, T C L can report num-
bers tha t look like CPU time, but are noise-free and can
be replicated on any Common Lisp platform, since T C L
runs on any Common Lisp.

2.2 H i g h - l e v e l M o d e l s

The fundamental operations of an AI program need not
be reduced to the primitives of Common Lisp--we can
define duration models at a higher level. For example, a
chess-playing program might define "evaluating a board
position" or "generating a move" as a fundamental "cog-
nitive primitive." The duration of some computat ion
is then O(f(n, m)), where m and n are the number of
these higher level primitives; for example, m could be
the number of board positions evaluated and n could be

the number of moves generated, and f is some arbi t rary
function of those numbers, determining the durat ion of
a move.

This is a natural approach to modeling the duration of
anytime algorithms, since many anyt ime a/gorithms use
iterative improvement or similar approaches where there
is a natural "unit" of duration (and quality). By encap-
sulating each iteration as a T C L primitive with its own
duration model, we can reduce the overhead of T C L (see
section 4) and have a program whose duration is simpler
and easier to understand. I t ' s hard to look at a CPU
time and know tha t i t 's "right," but if an i terative im-
provement algorithm reports a durat ion of, say, 70, and
each iteration takes 5 t ime units, it 's pre t ty clear what ' s
going on.

Of course, as with the primitives of Common Lisp, we
don ' t want to confine ourselves to constant- t ime models.
T C L allows duration models to be defined as arbi t rary
functions of the primitive 's arguments and the compu-
tat ional s tate of the system. The model can even be
pseudo-random, if tha t ' s desirable. To achieve our goal
of replicability, the model need only be a deterministic
computat ion.

An agent doing deliberation scheduling needs a simple,
declarative representat ion of how long thinking will take.
High-level cognitive primitives can help here, especially
since the duration models are stored in a T C L database
tha t is accessible to the agent. If the duration model
is not a simple constant, the agent can still t ry to pre-
dict how long the computat ion will take by guessing at
the aspects of the simulation s tate used by the duration
model. For example, it might be reasonable to guess
at the number of board positions tha t will be evaluated
during a move. I t certainly seems easier to guess at tha t
number than to guess at the amount of CPU t ime tha t
the move would take. Of course, a historical approach
can also be used, where the durations tha t occurred on
previous runs are used for prediction; these historical
durations can also be stored in the T C L database.

Using a high-level model also allows for a new class of
experiments in which the durations of different cognitive
primitives are independently controlled. For example, if
"move generation" and "board evaluation" are two cog-
nitive primitives in a chess agent, we can modify the
duration model for one primitive independently of the
other to see the effect on performance. In principle, one
can also alter the duration model for c a r independently
of tha t of cdr , but there are no interesting research ques-
tions posed by tha t manipulation. By moving to high-
level primitives, one can ask sensible questions about
durat ion/qual i ty tradeoffs.

SIGART Bulletin, Vol. 7, No. 2 12 Special Section on

2.3 I n t e g r a t i n g M o d e l s

High-level and low-level duration models are not mutu-
ally exclusive. In the call-tree of a program, the dura-
tions of higher functions can either be determined by
the code they call, even down to the lowest Lisp prim-
itives, or they can be determined by independent du-
ration models. This boundary is analogous to the the
AIB distinction described by Cooper et al. [3], where the
cognitive primitive is above the line (A) while the al-
gorithm is below the line (B)- - the line demarcates the
boundary between theoretical commitment and imple-
mentation detail. T C L makes no distinctions between
the levels of primitives and so can easily admit a mixture
of both ways to model duration. For example, uninter-
esting sections of the code can be given deterministic
durations by using the built-in T C L durations of low-
level primitives, or they can be given simple high-level
durations, such as a constant. Meanwhile, interesting
sections of the code--code whose behavior is anytime
or involves similar tradeoffs between deliberation quality
and speed--can be given more exacting duration models.

3 N o n - i n t e r f e r i n g C o d e

So far, we've described how the clock advances as each
primitive executes. What if we don't want the clock
to advance? Suppose, for example, we put in a p r i n t
statement either to debug or demonstrate the program's
behavior. We don' t want tha t insertion to affect the be-
havior of the simulation. With a CPU-time approach,
it can be hard to turn off the clock, but with T C L it's
trivial. Any code that shouldn't advance the clock is
wrapped in a f r e e form. For example, the following re-
ports what the agent is thinking about, without affecting
its thoughts or their duration:

(defun think ()

(free (format t "Thinking about ~s-~"
current-thought))

This ability is particularly important in anytime algo-
rithms and deliberation scheduling, since we will want
to insert code to measure and report the quality of the
result, yet we don' t necessarily want that code to affect
the algorithm's behavior. For example, measuring the
quality of a tour in the TSP (Traveling Salesman Prob-
lem) might be a non-trivial computation that is entirely
separate from the tour-improvement computation and
therefore should be off the clock. Even if we want the
quality computation to be on the clock, we may also be
saving the (duration,quality) pair to a file or database,
for future reference in deliberation scheduling. T C L al-
lows those operations to be done without interfering with
the simulation's behavior.

4 O v e r h e a d

What are the disadvantages of using T C L ? There are no
notational disadvantages, since it looks just like Com-
mon Lisp and requires no commitment to a particular
agent- or cognitive-architecture. The advancing of the
clock, however, does entail an inevitable overhead. Quite
simply, the code is doing more work. Therefore, there
will be some slowdown of the user's code.

It's difficult to make any blanket statements about how
much slowdown there will be without knowing the kind
of code and duration models. The speed will depend
partly on the level of the primitives tha t the code uses.
For example, if the code is "low-level" code that does a
lot of operations like ca r and cdr, each of those primi-
tives now has an associated increment of the clock. For
such simple functions, incrementing the clock is a signif-
icant slowdown. On the other hand, a function like s o r t
is barely slowed down by measuring the size of its input
(n) and incrementing the clock by cn log n, where c is
the duration model coefficient. If the user defines cog-
nitive primitives at a higher level, the overhead may be
even less. In addition, unfortunately, the speed also de-
pends on the quality of the Lisp compiler--a good com-
piler can open-code much of the incrementing code using
type-specific arithmetic instructions.

We can, however, take timings of s tandard benchmark
programs, to get an idea of how much T C L slows the
code down. The data in table 1 were collected using
Gabriel's benchmarks [4], which are available by anony-
mous F T P from the CMU AI archives or by contacting
us. The first two columns are raw timings (that is, CPU
seconds) for the benchmark programs running normally
in Harlequin Lispworks on a DEC Alpha. Note the dif-
ference between the entries in the two columns: this is
the variation that we want to be rid of by using T C L
rather than CPU time to define the duration of think-
ing. The third column reports the raw times for ordinary
T C L code, using primitive duration models increment-
ing a clock at run-t ime3

The fourth column is just like the third, except that T C L
used a code-walker (CW) to combine duration incre-
ments at compile-time. The code-walker looks for "ba-
sic blocks" of the p rogram--a basic block is straight-line
code, without loops or branches--and tries to compute
the total duration of the block. This can be done for the
: c o n s t a n t and : a r i t y duration models, which are very
common. For example, three consecutive computations
with constant durations of 2, 3 and 5, can be coalesced
at compile time to a single increment of 10 time units.
Therefore, the times in the fourth column are less than
or equal to the corresponding times in the third, repre-

1Note that all we needed to do to "port" the benchmark
programs to TCL from CL was to load the programs into a
different package. The algorithms across a row are exactly
the same.

Anytime Algorithms 13 SIGART Bulletin, Vol. 7, No. 2

Table 1: Timing studies on a DEC Alpha running Harlequin Lispworks. Columns 1 and 2 are two runs of the
benchmarks in ordinary Common Lisp. Columns 3 and 4 are runs of those benchmarks using two versions of T C L ,
with and without the code walker described in the text. Columns 5 and 6 are columns 3 and 4 divided by the mean
of columns 1 and 2, and therefore report the relative slowdown of using T C L .

raw CL raw TCL relative T C L
1st run 2nd run w/o CW w / C W w/o CW w / C W

boyer 1.182 1.142 3.033 2.515 2.6 2.2
browse 1.034 1.103 4.045 2.686 3.8 2.5
ctak 0.079 0.072 0.147 0.100 1.9 1.3
dderiv 0.288 0.322 0.359 0.307 1.2 1.0
deriv 0.338 0.335 0.416 0.347 1.2 1.0
destru-mod 0.118 0.120 0.303 0.140 2.5 1.2
destru 0.124 0.120 0.298 0.151 2.4 1.2
div2 0.273 0.308 0.597 0.339 2.1 1.2
fft-mod 1.413 1.326 1.871 1.382 1.4 1.0
fit 1.949 2.143 2.522 1.980 1.2 1.0
frpoly 2.626 2.562 4.050 3.283 1.6 1.3
puzzle-mod 1.474 1.076 1.876 1.357 1.5 1.1
puzzle 1.195 1.089 1.845 1.307 1.6 1.1
stak 0.113 0.112 0.184 0.146 1.6 1.3
tak-mod 0.183 0.186 0.670 0.430 3.6 2.3
tak 0.184 0.188 0.597 0.454 3.2 2.4
takl 0.106 0.093 0.383 0.260 3.8 2.6
takr 0.090 0.092 0.214 0.138 2.4 1.5
traverse 3.674 3.644 8.213 6.683 2.2 1.8
t r iang-mod 43.718 36.020 53.170 39.892 1.3 1.0
tr iang 15.741 16.043 33.002 19.452 2.1 1.2

senting the savings due to compile-time code-walking.

The third pair of columns is the speed of T C L , with and
without the code-walking, relative to the mean CL time.
For example, the 2.2 in the upper right of the table is
the speed of T C L with the code-walker (2.515) divided
by the mean of 1.182 and 1.142. This da ta is from just
six runs, and, because of the variance in measuring CPU
times, we would have to collect much more da ta to get
very precise estimates. Nevertheless, we can conclude
tha t (1) variance in measuring CPU time is indeed a
problem, and (2) the cost of using T C L appears to be
20 to 120 percent, depending on the benchmark program.
Naturally, we hope tha t realistic AI programs will tend
more towards the lower end of the range.

5 M E S S

We have re-implemented PHOENIX using a simulation
substrate called MESS (Multiple Event Stream Simu-
lator), of which T C L is a part . We describe MESS
as a simulation substra te because it makes no domain
commitment . Instead, it works with abstractions called
"events," "event streams" and "activities," among oth-
ers. One builds a simulation environment in MESS by
defining the events tha t happen, thereby changing the
s tate of the world, and defining the event s treams tha t

produce those events. The MESS substrate takes care of
synchronizing all the events so that the simulation un-
folds in the correct way, with processes interacting as
they should.

The implementer of a simulation uses the built-in event
classes and event streams of MESS by inheriting and
defining methods for CLOS (Common Lisp Object Sys-
tem) generic functions. For example, the realize
method implements the semantics of the occurrence of
an event. A user typically must define that method for
events that are unique to the new simulation. Another
example is the pop method of event streams, which cause
them to yield a new event upon demand; the user can
extend or modify the implementation of event streams
by defining that method on a new event-stream class.

One kind of event stream is a thinking event stream,
which are used to implement deliberative agents. It is
an event stream in which the interval between events is
determined by the amount of thinking done by the agent.
TCL allows us to define thinking event streams that
have deterministic behavior. MESS allows deliberative
agents to be smoothly integrated into a discrete event
simulation, with the agent events (sensor and effector
actions) to be correctly interleaved with other events,
even those from other agents.

SIGART Bulletin, Vol. 7, No. 2 14 Special Section on

Another feature of MESS defines activities, which occur
over an interval of time, and allows these activities to be
interrupted by events that occur during that time inter-
val. For example, an agent's movement can be modeled
as an activity, which might get interrupted by changes in
the environment. An agent's thoughts can also be mod-
eled as an interruptible activity. This feature is particu-
larly interesting to deliberation scheduling and anytime
algorithm researchers, because the thinking can be inter-
rupted by, for example, a timer going off or an event in
the world that indicates a change in the value of further
deliberation.

6 C o n c l u s i o n

Using the Timed Common Lisp language frees a re-
searcher from worrying about noise in measuring CPU
time, from worrying that a new release of the Lisp com-
piler will cause a change in an agent's behavior or an
algorithm's time/quality curves, from worrying that the
system's behavior on an DEC Alpha won't be the same
as on a SUN SPARCstation, and from worrying that
adding instrumentation code to collect statistics will
change the behavior of the simulation. This noise may
not even be very great; PHOENIX'S variance isn't very
much, but it is noticeable, and it is enough to pro-
hibit experiments in which we replicate particular sim-
ulation states. Therefore, TCL gives us a significant
advantage over a CPU-time approach. Furthermore, the
TCL approach allows us to declaratively represent du-
ration using high-level primitives, so that deliberation
scheduling becomes easier and allows us more control
over time/quality tradeoffs.

Because TCL is integrated with MESS, it can be easily
used to build deterministic simulation of multiple agents
acting under time pressure in a complex environment.

A c k n o w l e d g m e n t s

This work is supported by ARPA/Rome Laboratory un-
der contract F30602-93-C-0100 and by NTT Data Com-
munications Systems Corporation. The U. S. Govern-
ment is authorized to reproduce and distribute reprints
for governmental purposes notwithstanding any copy-
right notice contained hereon.

R e f e r e n c e s

[1] Scott D. Anderson. A Simulation Substrate for Real-
Time Planning. PhD thesis, University of Mas-
sachusetts at Amherst, February 1995. Also available
as Computer Science Department Technical Report
95-80.

[2] Paul R. Cohen, Michael L. Greenberg, David M.
Hart, and Adele E. Howe. Trial by fire: Understand-
ing the design requirements for agents in complex
environments. AI Magazine, 10(3):32-48, Fall 1989.

[3] Richard Cooper, John Fox, Jonathan Farringdon,
and Tim Shallice. Towards a systematic methodology
for cognitive modeling. Technical Report UCL-PSY-
ADREM-TR5, University College London, Novem-
ber 1992.

[4] Richard P. Gabriel. Performance and Evaluation of
Lisp Systems. MIT Press, 1985.

Anytime Algorithms 15 SIGART Bulletin, Vol. 7, No. 2

