
In Proceedings of the Fifth International Workshop on Arti�cial Intelligence and Statistics, 1995.Tools for Empirically AnalyzingAI ProgramsScott D. Anderson, David M. Hart,David L. Westbrook, Paul R. Cohenand Adam CarlsonComputer Science Technical Report 94-78Experimental Knowledge Systems LaboratoryComputer Science Department, Box 34610Lederle Graduate Research CenterUniversity of MassachusettsAmherst, MA 01003-4610AbstractThe paper describes two separate but synergistic tools for running experiments on large Lispsystems such as Arti�cial Intelligence planning systems, by which we mean systems that produceplans and execute them in some kind of simulator. The �rst tool, called Clip (Common LispInstrumentation Package), allows the researcher to de�ne and run experiments, includingexperimental conditions (parameter values of the planner or simulator) and data to be collected.The data are written out to data �les that can be analyzed by statistics software. The secondtool, called Clasp (Common Lisp Analytical Statistics Package), allows the researcher to analyzedata from experiments by using graphics, statistical tests, and various kinds of datamanipulation. Clasp has a graphical user interface (using Clim, the Common Lisp InterfaceManager, Version 2.0) and also allows data to be directly processed by Lisp functions. Clip andClasp form the foundation of a larger set of specialized tools we are building for the empiricalanalysis of AI programs.This research is supported by ARPA/Rome Laboratory under contract #'s F30602-91-C-0076 and F30602-93-C-0100.

1 IntroductionAs planning problems become more complex, in-volving hundreds of objects and thousands ofresources (e.g., ships, planes, trucks, satellites),researchers will need to turn to simulators, con-trolled experiments, and statistics to study thebehavior of their systems. In this paper wewill introduce two tools that we have devel-oped to aid in running and analyzing experi-ments: Clip and Clasp (Common Lisp Instru-mentation Package and CommonLisp AnalyticalStatistics Package). These tools are describedin more detail in Anderson et al. ([2]), wherewe give examples of their use with a planningsystem for a transportation planning problem.They form the substrate for a larger toolbox weare developing that is speci�cally designed foranalyzing AI programs.Clip enables researchers to de�ne experimentsin terms of the conditions under which the sim-ulator is to be run and data collected. Clipalso helps with the running of the experiment,by looping over all the experimental conditions,running the simulator, and writing the data to�les. At that point, a researcher will want to an-alyze the data using statistical software. Whilethe data �les that Clip writes can be analyzedby any statistical package, Clip is especially wellintegrated with Clasp. Clasp has many ofthe standard descriptive and inferential statis-tics, together with a convenient graphical userinterface, and a Lisp interaction window thatresearchers can use for implementing statisticaloperations that we have not anticipated. Clipand Clasp were developed to be portable acrossUnix Common Lisp platforms. 12 Running ExperimentsA great many experiment designs are used in sci-ence, but most of them can be viewed as sets oftrials, each with a number of independent vari-ables, representing the conditions under which1For speci�cs about the workstations and CommonLisp implementations that are supported, see the ReleaseNotes for Clip and for Clasp available at the ftp sitelisted in section 6

the trial is run, and a number of dependent vari-ables, which are the objects of scienti�c scrutiny.This is the simplest of the kinds of experimentdesigns that Clip supports. One common kindof experiment within this paradigm is called a\fully factorial" design, in which there are oneor more factors, each of which has a small num-ber of discrete levels. Another common kind ofexperiment looks at the relationship of two ormore continuous variables, such as the correla-tion between them. Clip supports both of theseexperiment designs.2.1 InstrumentationAdding code to extract information from asystem is called instrumentation, hence Clip'sname. Most of Clip's functionality is directedtowards extracting di�erent kinds of informa-tion from your system|information that is cal-culated afterwards, collected periodically duringexecution, or possibly collected whenever someevent occurs. This aspect of Clip is deferred tosection 2.2. First, we present an overview of howClip works and what you need to do to use it.2To use Clip to run an experiment, Clip �rstneeds to know how to run your simulator. Es-sentially, this is a single function or piece of codethat Clip can call to start a trial and which willreturn when the trial is over. Clip also workswith simulators that run in multi-threaded (mul-tiple process) Lisps, but it nevertheless treats thesimulator as a single piece of code.3 Betweentrials, Clip will need to reset your system, al-though this might be unnecessary if the simula-tor is purely functional (few are). If your sim-ulator has a notion of time, such as having aclock, and you want Clip to schedule events forparticular times, Clip will need to know how tointeract with the scheduler and the clock. Forexample, you might want to collect data everyday of the simulation, with the average being2This article is no substitute for the Clip/Clasp man-ual [1], where everything is rigorously explained.3This requirement may be lifted in future versions ofClip, but the impact is minor. Most multi-threaded Lispsprovide a process-wait function, which can be used tomake the simulator seem like a single piece of code.1

written to the data �le. To describe how to runand control your simulator, there is a single Clipmacro, called define-simulator.Next, you will de�ne your experiment, whichis again done with a single Clip macro, calleddefine-experiment. The heart of an experi-ment is the set of independent and dependentvariables, which are speci�ed with the macro.The independent variables are described with asimple syntax much like the Common Lisp loopmacro. The names of dependent variables aresimply listed; the de�nition of how to collect andreport the data is separately de�ned as objectscalled \clips," which will be discussed in the nextsubsection. The define-experimentmacro alsoprovides ways for the user to run code during theexperiment, at four distinct times:Before the Experiment: When the experi-ment gets started, you may want, for exam-ple, to load special knowledge-bases or setscenario parameters. This is also a chanceto do more mundane things, such as allocat-ing data structures or turning o� the screen-saver.Before Each Trial: At each trial, you maywant to reinitialize parameters and datastructures. One important thing to do isto con�gure your simulator for the currentexperimental condition.After Each Trial: The most important thingthat is typically done after each trialis to call the function write-current-experiment-data, the Clip function thatwrites all the data for this trial. This is alsoa good time to run the garbage collector.After the Experiment: Typically, code runafter the experiment undoes the code runbefore the experiment, such as deleting datastructures or turning on the screen saver.Of course, any arbitrary code can be executedat these times, for whatever purposes you want.The key idea is that the before- and after-trialcode surrounds every trial and runs many times,while the before- and after-experiment code sur-rounds the whole experiment and runs only once.

This ability to run arbitrary code is more thanjust an opportunity for hacks|it is a clear andprecise record of the exact experimental condi-tions. Records are important as a memory aidand as a means for replicating experiments.When the experiment has been de�ned,you start it running with the function run-experiment. This function takes arguments,which you can refer to in the before/after code,so that the �nal speci�cation of the experimen-tal conditions can be deferred until run-time.The run-experiment function also allows you tospecify the output �le for the data, the numberof trials, the length of the trial, and other suchinformation.De�ning the simulator and the experiment,and then running the experiment is fairlystraightforward and is only a fraction of whatmust be done to run an experiment. The bulkof the e�ort is in de�ning \clips"|functionsthat measure the dependent variables of yourexperiment. Fortunately, they are modular andreusable.2.2 ClipsClips are named by analogy with the \alligatorclips" that connect diagnostic meters to electri-cal devices. They measure and record aspectsof your system (the values need not be numer-ical). Essentially, they are Lisp functions thatyou de�ne and which Clip runs if they are in-cluded in the de�nition of the experiment. Oncewritten, they can be mentioned in any numberof experiments. Indeed, it is common to buildup �les of clips, so that a new experiment can bequickly de�ned by writing a define-experimentform (or editing an old one) and listing the clipsin the instrumentation argument to define-experiment.Clips are de�ned with the defclip macro,which is very much like defun, except that infor-mation added before the body is read by Clip.The central issue in de�ning a clip is the timethat it is run. (The code that is run is written inthe defclip body and is entirely up to the user.)Most clips simply measure values after a trialis �nished, for variables such as \�nish date,"2

\number of bottlenecks," and \total waiting timefor ships." More complicated clips may need torun periodically, which only makes sense for sim-ulators that have a clock of some sort; Clip willschedule the clip using the schedule-functionspeci�ed in the define-simulator form. Otherclips may need to run when some event occurs;this is accomplished by tying the clip to a func-tion in your simulator, using a mechanism likethe \advise" facility found in many Lisp imple-mentations. The defclip form has syntax fortying the clip to a function. When a clip is runmany times during a trial, it can either report themean of the values or it can report all the values(or some function of them), as time series data.We can statistically analyze time-series data tosee if there are temporal correlations. We cannotanswer such questions just by looking at meanvalues after a trial is over.Clip has other features to support experimen-tation, such as aborting a trial but continuing theexperiment, say when some intermittent errorhas occurred|very common in stochastic sim-ulations. Clip also lets you run only part of theexperiment, which facilitates breaking the exper-iment into parts to run on di�erent machines.These facilities are all explained at length in theClip/Clasp documentation [1].3 Data AnalysisThe idea of Clasp began when we wanted torun a t-test on some experiment data withouthaving to write out the data to a �le in sometab-delimited format, move the code to anothermachine, run a statistics program, and loadthe data. From this small beginning, we haveadded most of the workhorse statistical func-tions, data manipulation (regrouping, selectingsubsets), data transformation (such as log trans-forms), graphing software (now replaced by Sci-Graph, by Bolt, Beranek and Newman, Inc.).We have a convenient graphical user interfaceimplemented in Clim, and a programmatic in-terface so that the Clasp functions can be calledby the user if the desired data manipulation isn'talready on a menu. Ideally, everything can be

accomplished by menus in the graphical user in-terface.Clasp's screen interface, an example of whichis shown in �gure 1, comprises four areas: themenus, the datasets, the results, and the note-book:Menus The Clasp menus will appear acrossthe top of the window. The menus, whichwill be discussed below, are: File, Graph,Describe, Test, Manipulate, Transform andSample.Datasets When you load a �le of data intoClasp, such as a �le written by Clip, it be-comes a Clasp dataset and appears on thismenu. The name of the dataset is the nameof the experiment. Each column of data iscalled a variable; the name of the variable isusually the name of the clip that returnedthat variable, unless you specify a di�erentname in the defclip. Most operations inClasp take either datasets or variables asarguments, and the items in this pane be-come mouse-sensitive under those circum-stances.Results Display When a Clasp operationyields a complex result, such as a table orgraph, that object goes into a menu of re-sults.Notebook The notebook is a complete Lispread-eval-print loop, except that Claspcommands are also accepted. Having Lispavailable is important and powerful, becauseusers can operate on the data in ways wehave not yet implemented or even thoughtof. Clasp commands can be typed insteadof using the menus; indeed the menus justtype the appropriate thing into the note-book. When the command is fully entered,it is executed and its results are printed tothe notebook. Clasp output in the note-book is also mouse-sensitive when appropri-ate.Clasp uses a pre�x command syntax, verymuch like Lisp, in that you give the command3

Figure 1: Excerpt from sample interaction with Claspname �rst, such as :T Test Two Samples X Y,where X and Y are variables. Using the featuresofClim, Clasp allows command completion andprompts for arguments.Clasp groups related commands in the mainmenu. The following are the categories and thekinds of commands found in each. This descrip-tion is just a few highlights, but everything iscompletely described in the Clip/Clasp man-ual.File This menu allows you to load Claspdatasets from �les and to save them to �les,say if you've made changes or created newdatasets.Graph This menu allows a number of displaysof data, including histograms, scatter plots,line plots, and regression plots.
Describe This menu contains the most com-monly used descriptive statistics.Test This menu contains a variety of inferentialprocedures, including t-test, con�dence in-tervals, analysis of variance, chi-square andregression. In the near future, we plan toimplement bootstrap variants on most com-mon statistical functions [7].Manipulate Clasp provides several ways toextract subsets from a dataset through datamanipulation operations such as partition-ing. Other operations on this menu allowyou to create new datasets.Transform This menu has commands that pro-duce new variables from old ones (for exam-ple, by sorting a variable).Sample This menu contains commands thatproduce datasets by sampling from a given4

probability distribution.4 Empirical Analysis ToolboxClip/Clasp forms the core of a larger set ofempirical tools for analyzing the behavior of AIprograms that we are building. These tools are\add-on" modules to Clip/Clasp that help theuser �nd signi�cant relationships in data andmodel the causes of these relationships. Thesemodules are more focused than Clasp's generalstatistical procedures. Each is tailored to a spe-ci�c aspect of program analysis, such as �ndingthe major factors contributing to program suc-cess or identifying interactions of program com-ponents that degrade performance. The mod-ules we are currently building, while by no meanscomplete, include three that have proved partic-ularly useful:Exploratory Data Analysis Having run anexperiment and gathered data, the user isfaced with the task of identifying signi�cantrelationships among the factors measured.We are building a module that assists theuser in this e�ort by employing EDA tech-niques [11]. These techniques can partitiondata to distinguish di�erent modes of behav-ior and generate functional descriptions ofinteractions between factors. Through de-tailed exploration of experimental data theuser can gain a more complete picture ofsystem behavior.Dependency Detection The complexity of AIprograms has reached a point where theirbehavior can be di�cult to predict andproblems di�cult to replicate. Program ac-tions often interact in unforeseen and dele-terious ways. We employ a technique wecall dependency detection, analyzing pro-gram execution traces with a statistical �l-ter to �nd signi�cant dependencies amonginteracting actions [8, 9, 10].Causal Induction Having explored the dataand/or identi�ed dependencies among inter-acting factors, the user next tries to build a

predictive model of the program's behavior.We would like for such a model to tell us howto change the program to improve or mod-ify its behavior. This requires that we un-derstand the underlying causal relationshipsamong the factors inuencing its behavior.We are developing a module that uses pathanalytic techniques to build causal modelsfrom data [4], and have incorporated into itseveral new causal induction algorithms [6].Case studies using these and other empiri-cal techniques to analyze AI programs are in-cluded in a forthcoming textbook on empiricalmethods for AI research [5]. It is possible thatthe major contribution of Clip/Clasp will notbe as a standalone instrumentation and analy-sis package, but rather as a platform for the in-tegration of more powerful techniques such asthose described above. We envision a new gen-eration of statistical software in which knowl-edge and heuristics will guide the applicationof exploratory data analysis procedures. Weare currently at work on such a system whichwe call Aide, automated intelligent data explo-ration [11].5 Related WorkAn alternative to Clip is the Meters system,developed by Bolt, Beranek and Newman, Inc.,for use in the ARPA/RL Planning Initiative'sCommon Prototyping Environment [3]. Me-ters is particularly useful for collecting and �l-tering time-series data from distributed systems.XlispStat [12] provides a richer set of statisti-cal and graphical capabilities than the currentversion of Clasp, but is not as tightly inte-grated into an environment for instrumentationand analysis as is Clasp. Clasp's Clim inter-face also makes it more portable across the nu-merous Common Lisp platforms.6 Current StatusClip and Clasp are included as evaluation toolsin the ARPA/RL Planning Initiative's Common5

Prototyping Environment and will soon be incor-porated into Rome Laboratory's Advanced AITechnology Testbed. Clip/Clasp is being usedto instrument and analyze AI systems for plan-ning, scheduling, causal induction, molecular bi-ology, signal interpretation, and others.A Macintosh version of Clasp, MacClasp,is currently being prepared for distribution withthe textbook mentioned above. Examples in thetext are all analyzed with MacClasp. Mac-Clasp's interface is implemented using the Mactoolbox (instead of Clim { the MCL version ofClim has some quirks that make the originalClasp interface di�cult to use). MacClaspbene�ts from the intuitive look and feel of thenative Macintosh interface, though it lacks someimportant features of the Clim version, notablythe integrated Lisp Listener and convenient log-ging capabilities.Clip and Clasp may be obtained by anony-mous ftp from ftp.cs.umass.edu. Clip canbe found under the directory pub/eksl/clip,Clasp under pub/eksl/clasp; manuals andinformation about which platforms are sup-ported are included in both these direc-tories. A tutorial on Clasp is avail-able under pub/eksl/clasp-tutorial. Formore information about MacClasp contactclasp-support@cs.umass.edu.Development of Clip/Clasp continues, andis largely driven by user demand. We will con-tinue to add useful statistical tests and data ma-nipulation functions, as well as useful functionscontributed by the user base. Comments, bugs,new feature requests and general questions canbe sent to clasp-support@cs.umass.edu.7 ConclusionClip works directly with a user's simulator, help-ing the experimenter de�ne dependent measures,control independent variables and run experi-ments. Clasp is a statistics package and as suchcompetes with many good statistics packages onthe market. Its advantages are that it is imple-mented in Common Lisp and Clim, so that itcan easily be combined with your simulator and

with Clip, allowing for a completely integratedexperimental environment. These tools form thenucleus of an extended toolbox for the empiricalanalysis of AI programs we are developing. Webelieve such support for empirical science will beof signi�cant bene�t to the AI community.AcknowledgementsThis research is supported by ARPA/Rome Lab-oratory under contracts #F30602-91-C-0076 and#F30602-93-C-0100. The US Government isauthorized to reproduce and distribute reprintsfor governmental purposes notwithstanding anycopyright notation hereon. We thank the manycurrent and former members of EKSL whohelped develop Clip and Clasp, and in particu-lar Rob St. Amant, whose insights helped in thepreparation of this paper.References[1] Scott D. Anderson, Adam Carlson, David L.Westbrook, David M. Hart, and Paul R.Cohen. Clasp/Clip: Common Lisp Ana-lytical Statistics Package/Common Lisp In-strumentation Package. Computer ScienceDept. Technical Report 93-55, Univ. of Mas-sachusetts/Amherst, 1993.[2] Scott D. Anderson, Adam Carlson, David L.Westbrook, David M. Hart, and Paul R. Co-hen. Tools for experiments in planning. Toappear in Proc. of the Tools with Arti�cialIntelligence Conference. 1994.[3] Bolt Beranek and Newman, Inc. and ISXCorporation. Common Prototyping Envi-ronment Testbed Release 1.0: User's Guide,1993. BBN Systems and Technologies, 10Moulton Street, Cambridge, MA 02138.[4] Paul R. Cohen, Adam Carlson, Lisa Balles-teros and Robert St. Amant. Automatingpath analysis for building causal models fromdata. In Proc. of the Tenth InternationalConference on Machine Learning. Pp. 57-64.Morgan Kaufmann, 1993.6

[5] Paul R. Cohen. Empirical Methods in Arti�-cial Intelligence. MIT Press. Forthcoming.[6] Paul R. Cohen, Dawn Gregory, Lisa Balles-teros and Robert St. Amant. Two algorithmsfor inducing structural equation models fromdata. To appear in Proc. of the Fifth Interna-tional Workshop on AI and Statistics. 1995.[7] Bradley Efron and Gail Gong. A leisurelylook at the bootstrap, the jackknife, andcross-validation. The American Statistician,37(1):36{48, February 1983.[8] Adele E. Howe and Paul R. Cohen. Under-standing planner behavior. To appear in Ar-ti�cial Intelligence.[9] Adele E. Howe. Finding dependencies inevent streams using local search. To appearin Proc. of the Fifth International Workshopon AI and Statistics. 1995.[10] Tim Oates, Dawn Gregory and Paul R. Co-hen. Detecting complex dependencies in cat-egorical data. To appear in Proc. of the FifthIntern. Workshop on AI and Statistics. 1995.[11] Robert St. Amant and Paul R. Cohen. Pre-liminary system design for an EDA assistant.To appear in Proc. of the Fifth InternationalWorkshop on AI and Statistics. 1995.[12] Luke Tierney XlispStat. School of Statis-tics Report #528, Univ. of Minnesota, 1988.
7

