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1 Synopsis 

We were funded under a Thrust D award to develop algorithms for gist memory.  Gists are abstractions  
that preserve the important causal events in activities or episodes, eliding details.  Tactical plans such as  
ambushing an enemy are gists: the essential causal elements are that one remains hidden from the enemy  
until an advantageous moment, and then falls upon him suddenly.  We proposed to develop an algorithm 
to learn gists for tactical plans in the ISIS small-unit tactics simulator (ISIS is a military battlefield simulator 
based on a real-time strategy game). Results have been good (see Sec. 7.3 and [8]).  

 
However, the point of our Biologically-Inspired Cognitive Architecture (BICA) study was less to learn 

military tactics than to develop a new kind of representation, image schemas, and associated learning 
methods. We had been interested in image schemas for several years as a possible foundation for cognitive 
development, and, while it is not the goal of this project to “build a baby,” we found that the learning 
methods we designed for image schemas and gists are plausible learning methods for infants.  Our 
learning agent, called Jean in honor of Jean Piaget and Jean Mandler, has a small set of image schemas 
that serve as the innate sensori-motor endowment, and learns as infants do, by repeatedly executing 
primitive actions and previously learned gists. 

  
At this writing, the Jean project is a bundle of related and unfinished threads. Let us introduce them  

very briefly.  We developed a representation language for spatial arrangements called the Image Schema  
Language (ISL, Sec.  5).  It soon became clear that the image schemas that inspired us originally, from  
the Cognitive Linguistics literature, are mostly about static arrangements, whereas much commonsense  
knowledge is about dynamics.  Gists, in particular, are abstractions of activities, so Jean would need a  
representation of activities. We wanted real dynamics, not the faux dynamics of the situation calculus, so  
we developed two representations of dynamics.  The first, based on finite state machines, was the subject  
of several papers [18, 5, 32], but it was unsatisfactory for several reasons. More recently we have developed  
a representation of dynamics based on maps (Sec. 5.3), but we have no experimental results to report, yet.  
The Experimental State Splitting (ESS) algorithm learns action schemas, and also stitches them together  
to form gists from sequences of actions (Sec. 6.1). Jean recently got another algorithm, for learning word  
meanings (Sec. 8).  This  algorithm  and  ESS  were  developed  and  tested  independently  and  in  different  
environments — ESS in the ISIS military tactics simulator, the lexical acquisition algorithm in Jean’s  
Room, a physics-based simulator in which Jean is instructed in English to do things with toy blocks. We 
need to integrate the various parts of Jean and test the resulting system in both environments.  
 

We intend to team up with BBN Technologies and the Massachusetts Institute of Technology 
(MIT) Computer Science and Artificial Intelligence Laboratory   (CSAIL) for Phase II of BICA. The 
MIT group based their architecture on control loops that are similar in many ways to what we call 
action schemas and gists. Jean’s “architecture” is little more than a bundle of processes (see Sec. 4).  
It was not the point of our  Thrust D effort to design an architecture, and the MIT team has one, whereas 
we have designed a new class of knowledge representation (image schemas and gists) and learning 
methods.  
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                     2  Setting the Context: Developmental AI  

We view image-schematic representations and learning methods as developmental psychologists do, as 
plausible mechanisms for human cognitive development. Why might DARPA care about development? One 
reason is that image-schematic representations are inherently spatial and dynamical, and well-suited to 
representing and learning military tactics.  

 
Another reason, which speaks more directly to modeling development, is that thousands of AI 

researchers have not been able to achieve in fifty years what a newborn child does in a single year. Cognitive 
development appears to be effortless, inevitable, and amazingly rapid, which leads many psychologists to 
believe that the human infant is born with a kind of “developmental potential energy.” The infant 
architecture — its sensors, effectors, reflexes, preferences and mental processes — seems designed to change. 
In the right environment, this architecture transforms itself into the mind of a toddler, then into the concrete, 
literal mind of the elementary-school child, and, finally, into an adult abstract reasoner.  

 
If we could figure out how the infant mind is built, then perhaps we could build AI systems with the  

same propensity to bootstrap and self-organize.  There are good reasons to focus on infant and toddler  
intelligence:  While efforts to build general adult intelligence have failed for want of commonsense knowl- 
edge, infants and toddlers acquire this knowledge effortlessly— it is what they do.  While contemporary  
machine learning strangles in the grip of intellectual machismo, striving to solve harder problems in more  
sophisticated ways, infants and toddlers learn in very simple ways from enormously rich perceptual and so- 
cial information. Nowadays, approximations to these sorts of information are available from physics-based  
simulators and web-based social mechanisms such as MMOGs and chat rooms.  It is time to try to build  
an infant intelligence and take seriously the challenge of learning common sense and all that depends on  
it, including language.  
 
3  Architectural Principles of Cognitive Development  

The goal, then, is a bootstrapping, self-organizing cognitive architecture.  The architectural principles 
of the infant mind are moderately well-understood:  
 
Sensori-motor Activity First. The most important concept in the architecture of the infant mind goes by 
several names: Piaget and many others (including us) called it schemas, the MIT CSAIL group calls it loops.  
What roboticists call controllers, modern developmental psychologists call dynamical systems.  All refer to the 
idea that the infant exercises sensori-motor behaviors of increasing coordination and complexity, and in the 
process learns a great deal about her physical world.  
 

The first schemas are probably reflexes. The infant quickly achieves voluntary movement, although it  
is poorly coordinated and controlled.  Coordinated behaviors, integrating sensing and action, goals and 
predictions, soon develop. We call these larger compositions gists. In Section 6.1 we describe an algorithm 
for learning gists.  

  
 
 
 
 
 

 
2  



 
 
 

 
Consider seeing a toy, reaching for it, grasping it and banging it on the table. This simple gist involves 

the coordinated activity of perception, memory, planning, motor schemas, expectation and prediction, and 
learning.  Esther Thelen, in her pioneering studies of motor learning, discovered that loops such as 
coordinated reaching and grasping are not preprogrammed and do not develop in the same ways in all 
children [35]. Instead, because children have different physical capabilities, they must learn to coordinate 
them — a stronger child learns to attenuate her arm movements, a child with poorer visual acuity learns to 
move slightly more slowly. The child learns to assemble components of activity in ways that guarantee 
outcomes such as grasping a toy.  Unstable loops, such as leaning too far forward and toppling, give way to 
stable loops that work in most situations.  
 
Coordination and Mutual Bootstrapping.   No aspect of cognition develops in isolation from the rest. 
Motor development depends on perceptual development; language development depends on conceptual and 
social development, and vice versa.  
 
Perceptual Invariances and Affordances.  The origins of commonsense knowledge are in the child’s 
perceptual system.  The visual system provides many examples:  It innately makes a figure/ground 
distinction, computes size-constancy, responds to optic flow and looming, and roughly parses the visual scene 
into objects. Very early on, the child discriminates animate and inanimate motion (e.g., the way a human or 
dog vs. a ball move). The child learns quickly to correlate events across sensory modes (e.g., the sound and 
visual impressions of a ball bouncing).  
 

Perception often gives rise to invariances, which are reliable and unchanging relationships that can be 
extracted from changing perceptual arrays.  Kinetic depth, for instance, is the constant relationship 
between the distance between two objects and their rates of apparent movement when one moves one’s 
head. Two-month-olds use kinetic depth (rather than binocular depth, perhaps because their visual acuity is 
poor) to judge distances between objects.  Perhaps kinetic depth and other perceptual invariances are the 
genesis of a relational representational system.  

 
The child quickly learns affordances, which are relationships between how things appear and what one 

can do.  Rigid things with “handles” afford shaking, banging on surfaces, and so on.  Any such thing will do 
— spoons, chopsticks, and rattles, but not balls, socks, and stuffed toys. The affordances of objects are the 
earliest commonsense knowledge.  
 
Learning by Doing.   The AI approach to commonsense knowledge is to axiomatize; the child’s approach  
is to act. Young children learn most of what they know by doing and they are largely incapable of learning  
any other way.  Tell a toddler that pillows don’t bounce, and she will learn nothing.  Drop a pillow a few  
times, and she’s got it. Exercising a “reach and grasp” gist with different toys produces knowledge about  
rigidity and flexibility, texture and color, contingent action and effects (e.g., banging an object produces 
noise), and so on. Not until children are seven or eight years old can they learn from definitions (axioms), 
and, even then, they need concrete examples to make the concepts stick.  
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Memory and Semantics over Reasoning.  Human reason is slow and shallow, but human memory is  
timely and semantically deep. The young child, especially, lacks logical reasoning skills and language, yet  
can recognize and predict, classify and associate, communicate and understand, and has goals and acts  
to achieve them.  All this is accomplished with little of what adults call reasoning.  Instead, the child  
relies on a memory system that appears designed to extract or at least index information semantically.  
Children acquire their concepts and ontologies young. During the first year, infants apparently distinguish  
living from non-living things, manufactured objects from natural objects, children from adults, males from  
females, and numerous other distinctions. They discriminate based on gender, animacy, emotional cues in  
speech, and many other abstract properties. Some distinctions are based on perceptual differences, others  
on functional differences, and the child quickly coordinates perceptual and functional classes (e.g., the class  
of “things to bang on the table” is recognizable for its perceptual features as well as what one can do with  
instances.)  
 
Epigenetics.   There is vigorous debate about how much newborns know about the physical world and  
whether their perceptual systems provide them with structured representations or with “blooming, buzzing  
confusion.” (The methodology of experiments with infants, particularly habituation studies, is suspect.) It  
is safe to say that strong nativist and empiricist positions will probably not prove true, but instead, the  
infant has innate structure — certainly in its perceptual system — that determines the kinds of knowledge  
it develops.  
 
4 Introducing Jean 

Jean is an agent that models aspects of human cognitive development. Versions of Jean have been situated 
in three environments: A simple three-dimensional environment based on the Open Dynamics Engine 1, a 
small-unit tactics game called ISIS, and Jean’s Room, a Shockwave simulation in which a robot-like Jean can 
interact with toy blocks. Development of Jean will continue primarily in Jean’s Room.  

 
Jean’s architecture implements four processes, as shown in Figure 1.   Calling on a store of image  

schemas, perception involves building at least one, and usually many, image-schematic representations  
of the current situation. Action involves selecting an action schema and running its associated controller.  
Prediction involves monitoring the action and, if its trajectory enters a decision region, or is not as predicted,  
indicating a failure condition and perhaps selecting a new action. Learning involves reinforcing sequences of  
action schemas and forming gists, and, when actions have high-entropy distributions over decision regions,  
state-splitting to produce lower-entropy schemas.  These processes are described in detail in the following  
sections.  

 

 

 

 

 

 

1 http://www.ode.org/  
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Figure 1: Jean’s architecture builds image-schematic representations of the current scenario (perception), 
selects and implements action schemas (act), predicts how the scenario will unfold (predict), and learns 
new schemas and gists (learn).  
 

 
4.1 What is Innate? 

As engineers, we must provide enough innate knowledge of the right kind to support learning vast amounts  
of commonsense knowledge.  It follows that the innate endowment should be general — more like the  
Cyc upper ontology than specialized facts.  Why not the appropriate parts of Cyc?  The main reason is  
that Cyc contains logical axioms about the world, not representations (or elements thereof) of the world.  
Cyc might serve as a meta-language for reasoning about representations of the world; for example, given  
a representation of one block on top of another, Cyc presumably could reason about the entailments of  
“on-ness.” What we need, though, is a representational system we can hook up to a sensory system —  
something that will produce spatial representations that change as objects move — and Cyc isn’t that.  

 
Instead,  we have  developed  a  representation  language  called  the  Image Schema Language (ISL;  [32]).  

This effort implicitly says image schemas are innate, so let’s look briefly at the psychology and linguistics 
literature on image schemas.  
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4.2 Image Schemas 
Image schemas are representations that are “close” to perceptual experience. Some authors present them as  

re-descriptions of experience. Their popularity is due to their supposed generality and naturalness: Many  
situations are naturally described in terms of paths, up-down relations, part-whole relationships, bounded  
spaces, and so on.  Even non-physical ideas, such as following an argument, containing political fallout,  
and feeling “up” or “down,” seem only a short step from image-schematic foundations [20, 19, 16, 15, 34].  

 
In cognitive linguistics [24], “an image schema is a condensed redescription of perceptual experience for 

the purpose of mapping spatial structure onto conceptual structure. According to Johnson [16], these 
patterns ‘emerge as meaningful structures for us chiefly at the level of our bodily movements through space, our 
manipulations of objects, and our perceptual interaction’.” Image schemas have also been suggested to play a 
critical developmental role, forming the basis of early cognitive development, and possibly extending to all 
sensori-motor perceptual modalities [21, 22].  

 
Almost all image-schematic “theories” are post-hoc. Some steps have been taken toward the computa- 

tional  formalization  of  image  schemas  (notably, [2, 29]),  but  image  schemas  are  still  largely  discussed in  
descriptive, qualitative, abstract terms.  
 
5  ISL: An Image Schema Language  

Our intention has been to provide some image schemas as “innate” knowledge and learn the rest. One can  
go mad trying to find the best set of innate schemas (or, indeed, any ontological foundations) so, instead,  
we decided to implement a set of schemas that have been developed in the cognitive linguistics literature  
as a foundation for lexical semantics. This set is shown in Table 1. To date, ISL implements roughly half  
of them.  

 
Unfortunately, there are two problems with the image schemas described in the literature:  They are 

ambiguous, and most of them describe static arrangements. For example, the path schema might represent a 
static arrangement in physical space (e.g., a path between two buildings) or a path one intends to follow (e.g., 
the same path between buildings but with an intentional gloss) or the path one is actually following (e.g., the 
moment-by-moment location as one moves between the buildings).  

 
Eventually we developed three kinds of image schemas: Static schemas, which describe instantaneous 

snapshots; dynamic schemas, which represent non-agentive change; and action schemas, which represent 
agentive change. These are described in detail in the following sections.  
 
5.1  Implementing Image Schemas  

As represented in ISL, image schemas are objects, in the sense of the object-oriented data model.  
Each schema has a set of operations that determine its capabilities.  For example, operations for a 
container schema include putting material into a container and taking material out.  Each schema also has 
a set of internal  slots  that  function as the equivalent of roles in a case grammar sense [12].   Slots permit  
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                     Table 1:  Image schemas described by Croft and Cruse (2004)2.  
 
Space: Location, Up-Down, Front-Back, 

Left-Right, Near-Far, Verticality,  
Center-Periphery, Straight, Contact  

Force: Compulsion, Blockage, Diversion, 
Counterforce, Restraint, Resistance, 
Attraction, Enablement 

Containment: Container, In-Out, Surface, 
Content, Full-Empty 

Locomotion: Momentum, Path 
Balance: Axis Balance, Twin-Pan Balance, 

Point Balance, Equilibrium 
Identity: Matching, Superimposition 
Multiplicity: Merging, Collection, Splitting, 

Iteration, Part-Whole, Linkage, 
Count-Mass 

Existence: Removal, Bounded space, 
Cycle, Object, Process, Agent 

Space: Up-Down, Front-Back, Left-Right, Near-Far, Center-Periphery, Contact 
Scale: Path 
Container: Containment, In-Out, Surface, Full-Empty, Content 
Force: Balance, Counterforce, Compulsion, Restraint, Enablement, Blockage, Diversion, Attraction 
Multiplicity: Merging, Collection, Splitting, Iteration, Part-Whole, Mass-Count, Link 
Identity: Matching, Superimposition 
Existence: Removal, Bounded Space, Cycle, Object, Process 

 
 
image schemas to be related to each other through their slot values. For example, the contents of a container 
can be other image schemas.  
 

Image schemas are related by inheritance; for example, we define a container-with-capacity schema —  
with an additional slot representing capacity — as a specialization of a basic container.  

 
 An important aspect of ISL is its use of interpretation.  In object-oriented terms, interpretation can  
be thought of as an extended form of delegation.  Interpretations map from one or more specifications  
of a “source” image schema to a “target” schema.  For example, we would probably first think to rep- 
resent a room as a location or bounded space (i.e., a region) image schema, but from a fire marshall’s  
perspective it would be useful to interpret a room as a container with a capacity of some number of people.  
Interpretation gives us flexibility in evaluating the properties of some domain in terms of image schemas;  
different (even conflicting) interpretations can be maintained at the same time for a single “real” object or 
relationship.  Interpretation is also critical to metaphorical extension and bears relations to analogical 
mapping (e.g., [14]).  

  
                  ______________________________ 
                  2 Croft, W., and Cruse, D.A. Cognitive Linguistics. Cambridge University Press, 2004. 
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5.2  Static Image Schemas  
Static schemas represent spatial configurations. They have no dynamical content. Consider a chess board  

in which the Black queen has the White king in check.  In image schema terms, we say that there exists  
a path from the queen to the king. In ISL, we generate a path schema, which contains a set of locations,  
as shown in Figure 2.  Representing a path simply as a set of locations gives us generality, but here it’s  
important that the queen can traverse the path in the situation that holds currently on the board.  This  
is captured by an interpretation of the path as a set of directional linkages from each location (a source)  
to the next on the path (a destination).  Another piece of domain information is that no location can be  
occupied by more than one piece at a time. This is represented by an interpretation of each location as a  
container with a capacity of 1. When a piece moves to a location, the container reaches capacity and yet  
another image schema, empty/full, is automatically created, indicating that the location is full.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Representing blockage in ISL.  

 

Given these image schemas, their relationships, and the operations that they support, it becomes  
possible to reason about the situation and the possible responses White can make to counter the threat of 
the queen. The check exists because the path from the queen to the king is traversable. Traversability for a  
path schema is defined, in words, as follows: a path can be traversed when every linkage between successive  
locations can be traversed.  Traversability for a linkage schema, in turn, is allowed when its source can  
be entered and its destination can be exited. Basic locations have no built-in constraints on entering and  
exiting, but when a location is interpretable as a container, this changes.  One cannot add more to a  
container that has reached capacity. The interpretation relationships between these schemas cause changes  
to propagate outward:  a full container cannot be added to; its location cannot be entered; a directional  
linkage cannot be traversed (via its source); a path cannot be traversed (due to a non-traversable linkage).  
The result is a new image schema, blockage, which is created when a container representing a location that  
 

 

8  
 
 



 
 
 

 

acts as the source of a directional linkage in a path becomes full. The contents of the container constitute  
the blocker.  This structured combination of image schemas—locations, path, linkages, blockage, and so  
forth—can be stored away in memory for later retrieval, limiting the need for a complete reconstruction of  
the combination from scratch.  

 
The ISL representation provides a description of the situation in the form of a structured combination  

of image schemas.  Compare this combination with how we might describe a tactic in chess:  “When an  
opponent’s piece puts your king in check, you can counter by moving another piece into its path.”  The  
combination of schemas captures the essence of this natural language description.  The representation is  
general, abstracting away the specific positions of the pieces, the existence of other pieces, even the identity  
of the attacking piece. The generality of the representation can also be seen in that its substructure maps  
to other basic concepts in chess.  By using object schemas that include information about the color of  
a piece, we can use the path/linkage substructure to represent a threat of one piece on another, when  
the colors of the pieces are different; if they are the same, we can represent a defense relationship.  The  
representation also supports the ability to reason about emergent structure.  White might have a dozen  
possible moves in the situation given in the example, but few of them will be appropriate (or even legal).  
One of White’s most plausible responses, in terms of image schemas, is to recognize that the situation is a  
partial match to a blockage schema (which does not yet exist), and that a specific response will lead to the  
creation of the blockage. Rather than reasoning about the low-level properties of individual pieces, White  
reasons using tactical abstractions. Other chess concepts similarly lend themselves to abstraction that can  
be naturally captured by image schemas:  application of force on the opponent’s king (even if the king is  
never put in check), balance in the distribution of pieces on the board, control of the center of the board,  
and so forth.  Lower-level descriptions of moves (e.g., based on paths alone) are not inaccurate, but they  
fail to capture the reasons behind the moves.  
 
5.3 Action Schemas 

Action schemas have three components: controllers, maps, and decision regions. Controllers control Jean’s 
behavior.  For example, the (move-to Jean Obj) controller moves Jean from its current location to the 
specified object.  Jean has very few innate controllers — move-to, turn, rest, apply force.  It learns to 
assemble controllers into larger plan-like structures called gists as described in Section 6.1.  

As Jean moves (or executes any other controller) certain variables change their values; for instance, the 
distance between Jean’s current location and Obj usually decreases when Jean executes the move-to  
controller. Similarly, Jean’s velocity will typically ramp up, remain at a roughly constant level, then ramp  
down as Jean moves to a location.  The values of these variables ground out in Jean’s sensors, although  
some variables correspond to processed rather than raw sensory information. In particular, some variables  
in maps may correspond to the presence or absence, or level, or variables in static image schemas; for  
instance, the presence or absence of an object, or the distance one object is behind another.  

 
These variables serve as the dimensions of maps.  Each execution of a particular schema produces a 

trajectory through a map — a point that moves, moment by moment, through a space defined by distance and 
velocity, or other bundles of variables. Each map is defined by the variables it tracks (typically, several 
variables), and different maps will be relevant to different controllers.  
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Each invocation of a controller creates one trajectory through the corresponding map,  so multiple  

invocations — repeating an action several times — will create multiple trajectories. Figure 3 shows several  
such trajectories for a map of distance for the  move-to controller. One can see that  move-to has a “typical”  
trajectory, which might be obtained by taking the mean of the trajectories in the map. Also, when operating  
in Jean’s environment, move-to produces trajectories that lie within some distance of the mean trajectory.  
In a manner reminiscent of Quality Control Jean can assess whether a particular trajectory is “going out  
of bounds.”  

 
Every map has one or more decision regions within which Jean may decide to switch from one controller  

to another. One kind of decision region corresponds with achieving a goal; for example, there is a decision  
region of the  move-to  map in which distance to the desired location is effectively zero  (e.g.,  the thin,  
horizontal grey region in Figure 4). Another kind of decision region corresponds to going out of bounds and  
being unable to achieve a goal; for instance, there is a region of a time-distance map from which Jean  
cannot move to a desired location by a desired time without exceeding some maximum velocity (e.g., the  
inverted wedge-shaped region in Figure 4). These regions are sometimes called envelopes, [13, 7, 1, 28]  

 
Jean is not the only agent in its environment and some maps describe how relationships between Jean 

and other agents change.  The upper two panels of Figure  6  illustrates how distance, relative velocity, 
heading, and contact change in an environment that includes Jean and another agent, called the “cat,” an 
automaton that moves away from Jean if Jean moves too close, too quickly.  

 
The idea that sensori-motor and pre-operational development should rely on building and splitting maps or 

related dynamical representations was anticipated by Thelen and Smith [35] and has been explored by other 
researchers in developmental robotics and psychology (e.g., [30, 9, 31, 3, 21, 22]).  

 
 
5.3.1  Action Schemas as Finite State Machines  

It will help to draw parallels between Jean’s maps and the more familiar elements of finite state machines  
(FSMs).   Conventionally, states in FSMs represent static configurations (e.g., the cat is asleep in the  
corner) and arcs between states represent actions (e.g., (move-to Jean  cat)).  For us, arcs correspond to  
the intervals during which Jean executes controllers (i.e., actions), and states correspond to decision regions  
of maps.  That is, the elements of action schemas are divided into the intervals during which a controller  
is  “in bounds”  (the arcs in FSMs)  and  the  intervals  during  which  Jean  is  thinking about what to do next 
(the states). Both take time, and so require a rethink of the conventional view that states in FSMs persist  
and transitions over arcs are instantaneous. However, the probabilistic semantics of FSMs are retained: A  
controller invoked from a decision region (i.e., an action invoked in a state) will generally take Jean into one  
of several decision regions (i.e., states), each with some probability.  Figure 5 redraws Figure 4 as a finite  
state machine.  Starting from a decision region of some action schema A, the move-to controller will, with  
some probability (say .7), drop Jean in the decision region associated with achieving its goal and, with the  
complementary probability, in the region associated with being unable to achieve the goal in time.  
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Figure 3:  Trajectories through a map of distance between Jean and a simulated cat.  Sometimes, when 
Jean gets close to the cat, the cat moves away and the distance between them increases, in which case a 
trajectory may go “out of bounds.”  

 
 
      move‐to  

distance  
 
 
 
 
 
0  

time  
 

 
Figure 4: This schematic of a map, for the (move-to Jean Obj) controller, has one decision region 
associated with the distance between Jean and the object Obj being zero. The other decision region 
bounds the area in which Jean cannot reach loc even moving at maximum speed.  

 
 
 
5.3.2 Dynamic Schemas 

There is one special case: Sometimes the world changes when Jean is doing nothing.  We model this as a  
schema in which no controller is specified, called a dynamic schema to distinguish it from an action schema. 
Dynamic schemas do have maps, because variables such as distance between Jean and another agent can 
change even when Jean does nothing; and they have decision regions, because Jean may want to invoke a 
controller when these variables take particular values (e.g., moving away when another agent gets too 
close). The FSMs that correspond to dynamic schemas have no controller names associated with arcs but are 
otherwise as shown in Figure 5.  
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Figure 5: The action schema from Figure 4 redrawn as a finite state machine in which arcs correspond to 
the execution of controllers and states correspond to decision regions.  

 
 
 
6  Learning Actions Schemas and Gists  

Jean learns new action schemas and gists, and, quite recently, Jean has started to learn the meanings 
of words. This section describes the Experimental State Splitting algorithm for learning action schemas and 
gists. It also reports some experimental results. Section 8 is about lexical learning.  
 
6.1  Experimental State Splitting  

Jean learns new schemas in two ways, by composing schemas into gists and by differentiating states in  
action schemas.  Both are accomplished by the Experimental State Splitting (ESS) algorithm.  The basic  
idea behind Experimental State Splitting (ESS) is simple. The algorithm starts with a minimal state model  
of the world, in which it has only one all-encompassing state.  This model is modified as the agent (i.e.,  
Jean) explores its world, so that it becomes more predictive of some measure of observed action 
outcomes.  

 
For a general developmental account we want a general measure, not a task-specific one. To accord with the 

idea that learning is itself rewarding, this measure might have something to do with the informativeness or 
novelty or predictability of states. In Jean, the ESS algorithm uses a measure we call boundary entropy, which 
is the entropy of the next state given the current state and an intended action.  Initially, when there is 
only one state in the model, the entropy will always be zero. One way to drive Jean toward more states, 
and, thus toward states that have boundary entropy, is to have a goal state in addition to the initial (non-goal) 
state. At any moment in time, the agent is in one of these two states, and each state-action pair generates 
some probability distribution over the set of possible next states. ESS calculates the entropy of this 
distribution and uses it as a state splitting criterion.  

 
In general, Jean is driven by ESS to modify its world model by augmenting existing states with new  

states that reduce the boundary entropies of state-action pairs. This augmentation is achieved by splitting 
an old state into two (or more) new states based on distinguishing characteristics. The state machine thus 
grows over time as the agent adds more attributes to its state descriptions.  
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As Jean interacts with the world, it counts the transitions between the states via particular actions. If the 
developing state machine model is Markov, then the model is a Markov Decision Process (MDP), which Jean 
can solve for the optimal policy to reach its goal state. In this way, the developing model can be used for 
planning. However, it is worth pointing out that since Jean operates in a continuous environment using fairly 
general action schemas, its world model is more like a semi-Markov Decision Process (SMDP), where each 
action results in a transition between states after a certain amount of time, and this time interval is drawn 
from some probability distribution.  

 
If Jean lives always in one environment with one set of goals, then ESS will eventually produce optimal  

policies for the environment. However, the purpose of the Jean project is not to produce optimal policies  
for each task and variant of Jean’s environment, but, rather, to explain how a relatively small set of policies  
may quickly accommodate (as Piaget called it) or transfer to new tasks and environments. Our approach  
to this problem is to extract gists from policies.  Gists are like policies, in that they tell Jean what to do  
in different situations, but they are more general because they extract the “usual storyline” or essential  
aspects of policies. We claim that these essential aspects are typically the causal relationships that govern  
actions and effects in the environment. If an agent can identify and learn these causal relationships, then  
it should have a very good idea of how its actions affect the world and how act to achieve its goals, even  
in novel situations.  

 
We give a formal outline of the Experimental State Splitting (ESS) algorithm in this section.  Jean  

receives a vector of features F t  = {f1 , . . . , fn } from the environment at every time tick t.  Some features  
will be map variables, others will be inputs that have not yet been associated with maps. Jean is initialized  
with a goal state sg and a non-goal state s0.  St is the entire state space at time t.  A is the set of all  
controllers, and A(s) ⊆ A are the controllers that are executed in state s ∈ S.  Typically A(s) should be  
much smaller than A. H (si , aj ) is the boundary entropy of the state si  in which controller ai  is executed.  
A small boundary entropy corresponds to a situation where executing controller aj  from state si  is highly  
predictive of the next observed state. Finally, p(si , aj , sk ) is the probability that executing controller aj  in  
state si  will lead to state sk .  

 
For simplicity, we will focus on the version of ESS that only splits states; an alternative version of ESS is 

also capable of learning specializations of parameterized controllers. The ESS algorithm follows:  
 
•  Initialize state space with two states, S0  = {s0 , sg }.  

•  While -optimal policy not found:  

-  Gather experience for some time interval τ to estimate the transition probabilities p(si , aj , sk ). 

 -  Find a schema feature f ∈ F , a threshold θ ∈ Θ, and a state si  ∈ S to split that maximizes the  
 boundary entropy score reduction of the split: maxS,A,F,Θ H (si , ai ) −min(H (sk1 , ai ), H (sk2 , ai )),  
 where sk1   and sk2   result from splitting si  using feature f and threshold θ: sk1  = {s ∈ si |f < θ }  
 and sk2  = {s ∈ si |f ≥ θ }.  

-  Split si  ∈ St  into sk1   and sk2 , and replace si  with new states in St+1 . 

-  Re-solve for optimal plan according to p and St+1  
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Finding a feature f and the value on which to split states is equivalent to finding a decision region to 
bind a map.  

 
Without heuristics to reduce the effort, the splitting procedure would iterate through all state-controller 

pairs, all features f ∈ F , and all possible thresholds in Θ, and test each such potential split by calculating a 
reduction in boundary entropy. This is clearly an expensive procedure.  
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Figure 6: New states are indicated when multiple state variables change simultaneously.  

 

ESS uses a simple heuristic to find threshold values for features f and, thus to split a state:  States 
change when several state variables change more or less simultaneously.  This heuristic is illustrated in 
Figure 6. The upper two graphs show time series of five state variables: headings for Jean and the cat (in 
radians), distance between Jean and the cat, and their respective velocities. The bottom graph shows the 
number of state variables that change value (by a set amount) at each tick.  When the number of state 
variables that change simultaneously exceeds a threshold, Jean concludes that the state has changed. The 
value of the schema f at the moment of the state change is likely to be a good threshold for splitting f. For 
example, between time period 6.2 and 8, Jean is approaching the cat, and the heuristic identifies this period 
as one state. Then, at time period 8, several indicators change at once, and the heuristic indicates Jean is in 
a new state, one that corresponds to the cat moving away from Jean.  
 
6.2 An Example 

Figure 7 illustrates a gist for approaching and contacting a simulated cat.  In the scenario in which this  
gist was learned, the cat is animate, capable of sitting still, walking or running away.  The cat responds  
to  Jean.  In  particular, if  Jean  moves  toward  the  cat rapidly, the cat will run away; if Jean approaches  
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slowly, the cat will tend to keep doing what it is doing.  Because of these programmed behaviors, there is 
uncertainty in Jean’s representation of what the cat will do, but there is a general rule about how to 
catch the cat, and it can be represented in a gist: The only way to catch the cat is to first get into state s2 
(Figure 7), where the cat is nearby and not moving quickly, and then to move fast toward the cat, reaching 
state s1. All other patterns of movement leave Jean in states s3 or s4. This corresponds to the strategy of 
slowly sneaking up to the cat and then quickly pouncing on it to catch it.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: A learned composite action schema for catching a cat.  

 

To learn a gist like the one in Figure 7, Jean repeatedly retrieves action schemas from its memory, runs the 
associated controllers, producing actions, specifically slow and fast movement to a location; assesses the 
resulting states, and, if the transitions between states are highly unpredictable, Jean splits states to make 
the resulting states more predictable.  

 
In fact, the three states, s2 , s3 ,  and s4  were all originally one undifferentiated state in which Jean moved 

either fast or slowly toward the cat.  Jean’s learning history — the distinctions it makes when it splits 
states — begins with a single, undifferentiated non-goal state.  Then, Jean learns that the type of object is 
an important predictor of whether or not it can catch the object. Balls are easy to catch, whereas cats are 
hard to catch.  From here, ESS recognizes that distance also influences whether or not it can catch a cat. 
Starting near the cat, a fast-approach-object (F) action will often catch the cat, whereas this action will not 
usually catch the cat from further away. Thus, ESS splits on distance with a threshold of 6, where <= 6 is 
considered near, and > 6 is far.  Finally, ESS may notice that even when Jean is near the cat, sometimes 
it does not succeed in catching the cat. This might be because the cat is already moving away from the agent 
with some speed.  Thus, ESS may do a final split based on the velocity of the cat.  This process leads to 
the states s2 , s3 , s4  and s5  that we see in Figure 7.  
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7 Transferring Learning 
Although ESS can learn action schemas and gists for new situations from scratch, we are much more 

interested in how previously learned policies can accommodate or transfer to new situations. This is, after all, 
how children learn. Gists capture the most relevant states and actions for accomplishing past goals. It 
follows that gists may be transferred to situations where Jean has similar goals and the conditions in the 
situation are similar.  

 
The version of ESS that we described above is easily modified to facilitate one sort of transfer:  After 

each split we remove the transition probabilities on all action transitions between each state. This allows the 
state machine to accommodate new experience while maintaining much of the structure of the machine (see 
[18] for a previous example of this idea). In the experiments in the next section we explore the effects of 
transfer using this mechanism in several conditions.  
 
7.1 Experiments 

To measure transfer we adopt a protocol sometimes called B/AB: In the B condition the learner learns 
to perform some tasks in situation or scenario B. In the AB condition, the learner first learns to perform 
tasks in situation or context A and then in B.  By comparing performance in situation B in the two 
conditions after different amounts of learning in situation B one can estimate the effect of learning in A and 
thus the knowledge transferred from situation A to situation B.  In our experiments, better learning 
performance means less time to learn a gist to perform a task at a criterion level.  Thus, a smaller area 
beneath the learning curve indicates better learning performance, and we compare conditions B and AB by 
comparing the area beneath the learning curves in the respective conditions.  

 
We tested Jean’s transfer of gists between situations in the 3-D real time strategy game platform ISIS. 

ISIS can be configured to simulate a wide variety of military scenarios with parameters for specifying 
different terrain types, unit types, a variety of weapon types, and multiple levels of unit control  (from 
individual soldiers to squad-level formations).  

 
In each of three experiments, Jean controlled a single squad at the squad level, with another squad  

controlled by an automated but non-learning opponent.  Jean’s squad ranged in size from 7 to 10 units,  
while the opponent force ranged from 1-3 units. Although the opponent was smaller, it could move faster  
than Jean’s forces.  In each experiment, Jean’s goal is to move its units to engage and kill the opponent  
force.  Each experiment had a transfer condition AB and a control condition, B. In the former, Jean  
learned gists to accomplish its goal in a scenario designated A and then learned to accomplish its goal in  
scenario B.  In the latter, control condition, Jean tried to learn in scenario B without benefit of learning  
in A.  

 
Jean is provided four innate action schemas:  run, crawl, move-lateral, and stop-and-fire.  It must 

learn to compose these into gists that are appropriate for different engagement ranges, possible entrenchment 
of the opponent, and some terrain features (mountains).  

 
The experiments differ in their A and B scenarios:  

Experiment 1:  All action takes place in open terrain.  A scenarios all have Jean’s forces starting near  
 enemy forces. B  scenarios are an equal mix of starting near the enemy or far away from the enemy.  
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Experiment 2:  All action takes place in open terrain.  A  scenarios all have Jean’s forces starting far  
 from the enemy forces.  B  scenarios are an equal mix of starting near the enemy or far away from  
 the enemy.  

Experiment 3: The terrain for A  scenarios is open, whereas the terrain for B  scenarios has a mountain  
 that, for some placements of Jean’s and the enemy’s forces, prevents them seeing each other.  (The  
 advantage goes to Jean, however, because Jean knows the location of the enemy forces.)  The A  
 scenario is an equal mix of starting near or far from the enemy, the B  scenario is an equal mix of  
 starting near and far from the enemy in the mountain terrain.  
 
7.2  Metrics and Analysis  

We plot the performance of the Jean system in the various experimental scenarios as learning curves over 
training trials. Better learning performance is indicated by a smaller number of training instances required by 
Jean to achieve a criterion level of performance.  Thus, a smaller area beneath the learning curve indicates 
better learning. We developed a randomized-bootstrap test of significance to test the hypothesis that Jean 
transfered knowledge from condition A to B (see [8] for details of the analysis). 
 
7.3 Results 

Let us start with a qualitative assessment of what Jean learned. In Experiment 1, Jean learned in scenario  
A to run at the enemy and kill them. In scenario B , Jean learned a gist that included a conditional: When  
starting near the enemy, use the gist from scenario A, but, when starting far from the enemy, crawl —  
don’t run — until one is near the enemy and then use the gist from scenario A. The alternative, running at  
the enemy from a far starting location, alerts the enemy and causes them to run away. State splitting did  
what it was supposed to do:  Initially, Jean’s gist for scenario B  was its gist for A, so Jean would always  
run at the enemy, regardless of starting location. But through the action of state splitting, Jean eventually  
learned to split the state in which it ran at the enemy into a run-at and a crawl-toward state, and it  
successfully identified the decision region for each.  For instance, the decision region for the crawl-toward  
state identifies a distance (corresponding to being near the enemy), from which Jean makes a transition to  
the state in which it runs at and shoots the enemy.  

 
Similar results are obtained in Experiment 3, where Jean learns to run at the enemy from a far starting  

location as long as the mountain prevents the enemy from sighting Jean, otherwise to crawl.  
 

 In Experiment 2, Jean learned nothing in scenario A  and was no more successful in scenario B.  This  
is due to the difficulty of the scenario. Jean is always initialized far away from the enemy units, and must  
learn a policy for killing them by exploring a continuous, high-dimensional feature space using her four  
available actions. Many of these actions result in the enemy soldiers detecting Jean’s presence and running  
away, thus reducing Jean’s chances of ever reaching her goal by simple exploration.  Since Jean does not 
learn anything useful in the A scenario, her performance in the AB transfer condition is no better than in the 
control condition B.  
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8  Learning Word Meanings  

A recent version of Jean is situated in a simulated physical room full of blocks. Jean can move around the 
room and pick up and carry the blocks. This environment, called Jean’s Room, is a testbed for learning the 
meanings of words. A human participant instructs Jean in English, as shown in Figure 8. For instance, he 
might type, “Pick up the green cone,” and Jean might reply, “which is the green cone.” When the human 
identifies it, Jean has the opportunity to learn what the words “green” and “cone” refer to, or to refine 
earlier hypotheses about the meanings of these words.  

 
The learning method is quite simple and intuitive:  Each word is represented by a vector of features  

and  feature  values,  maintained in a large table (the orange block in Figure 8). When Jean is presented with  
a scene, it produces an image-schematic representation (the yellow block in Figure 8). When presented with  
a sentence such as “Put the blue one behind the green cone,” Jean runs it through a parser, and then  
associates words in the sentence with aspects of the scene, constrained by the parse.  For example, Jean  
knows there are two objects in the scene, one of which it is holding (or containing, in image-schematic  
terms). Jean knows (in-front-of Obj-1 Obj-2) and, conversely, (behind  Obj-2  Obj-1). Suppose the  
word “behind” is not known to Jean.  Because Jean has parsed the sentence, it knows that “behind” is  
a preposition, so it guesses that  “behind” refers to either the in-front-of or the behind relationship  
between the objects. Jean updates the score of each of these hypotheses in the word/model feature table  
using a technique called regret minimization. Over time, model features become associated with words, so  
in-front-of becomes associated with “front,” and behind becomes associated with “rear,” and “back,”  
and so on.  
 

This associative method is closely related to previous work we have done in lexical semantics (e.g., [36, 
25,27,10]).  
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Figure 8: Jean learns word meanings by building an image-schematic model of the scene (pale yellow box), 
parsing the sentence (pale blue box), and probabilistically associating words with aspects of the scene in a 
large table (orange box).  

 
 
9 Future Work 

The map-based representation of action schemas has been extended in several ways in our lab, though 
the techniques have not yet been incorporated into the Jean project.  Maps provide a natural representation  
for the lexical semantics of some verbs.  Indeed, verbs that differ subtly in manner can be differentiated  
in the map formalism, though not easily in a logical formalism.  For instance, it is straightforward to  
differentiate shove  from push  with maps.  Another advantage of maps is that their regions can serve as  
goals for the purpose of planning, and also for interpreting intentions. These aspects of maps are described  
in the following sections.  
 
9.1  Representing the Meanings of Verbs  

Previous  work  has  shown  that  robots  can  learn  the  meanings  of  words  by  associating  aspects  of  the 
perceptual array with utterances (e.g., [33, 25, 31, 6, 10]). For a comprehensive review of the psychological 
literature on dynamics and word meanings see [4].   A persistent question in the work is whether the 
perceptual array contains enough information to provide semantics for words, or, in a slightly different 
formulation, what fraction of the variability of word use is explained by information in the perceptual 
array?  A concrete version of this question is posed here:  What fraction of the variability of word use is 
explained by the dynamical aspects of interactions between two objects?  
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In [9], we developed 18 movies of interactions between object. Each movie was generating by a 
program written in breve [17], an animation tool with good physics.   A vector of parameters of each  
program characterizes the dynamics of the corresponding movie.  We showed the movies to pre-school  
children and asked them to describe the action in the movies.  After removing non-content words, we  
characterized each movie by a distribution of words.  We ranked all pairs of movies in two ways:  by the  
similarities of their word distributions and by the similarities of their vectors of program parameters. Then  
we compared the rankings.  The results are highly significant:  there is strong dependence between the  
parameters of the programs that generated the movies and the distributions of words that children use to  
describe the movies.  
 
9.1.1 Maps for Verbs 

In the maps for verbs representation of verb meanings, the denotations of verbs dealing with interactions 
between two bodies, such as push, hit, chase, and so on, are represented as pathways through a metric 
space, or map, the axes of which are perceived distance, velocity, and energy transfer [6]. Verbs with similar 
meanings have similar pathways. A scene, such as one object chasing another, is thought to be perceived as 
a pathway through the map. To learn verb meanings, one simply associates verbs that describe scenes with 
the corresponding pathways.  

 
Although maps are compact and objective representations of some verb meanings, we do not know 

whether they have psychological reality — whether humans use maps to assign meanings to verbs.  Even if 
they do, the original maps for verbs representation might have the wrong axes, or the axes might be 
correct but verbs might not be correlated with the particular features of pathways, as we thought.  The 
experiment in this paper does not test whether humans have maps in their heads. Instead it asks, “If one 
creates movies which are different according to the maps for verbs framework, will human subjects use 
different distributions of words to describe them?” 
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Figure 9: Maps-for-verbs model of the three phases of interaction.  
 

In the maps for verbs framework, the dynamics of interaction are split into before, during (contact), and  
after phases.  Figure 9 depicts these phases with illustrative trajectories in each. The axes of the maps are the  
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same in the before and after phases: they are relative velocity and distance between the two bodies. Relative 
velocity is the difference between the velocity of one body, A, and another, B: Velocity (A) − Velocity (B ). 
Many verbs (e.g., transitive verbs) predicate one body as the “actor” and the other as the “target” (or 
“subject” or “recipient”) of the action.  For example, in a push interaction, the actor does the pushing, and 
the target is the body being pushed. By convention, the actor is designated as A and the target is B. Thus, 
when relative velocity is positive, the actor’s velocity is greater than that of the target; and when relative 
velocity is negative, the target’s velocity is greater than that of the actor.  Distance, in turn, is simple 
Euclidean distance between the bodies.  

 
The vertical dimension of the map in the during  phase is perceived energy transfer (from the actor to  

the target).  If energy transfer is positive, then the actor is imparting to the target more energy than the  
target originally had; if energy transfer is negative, then the situation is reverse and the target is imparting  
more energy to the actor. Since energy transfer is not directly perceivable, we approximate it by calculating  
the acceleration of the actor in the direction of the target while the actor and target are in contact.  

 
The labeled trajectories in Figure 9 characterize the component phases of seven interaction types, as  

described by the verbs push, shove, hit, harass, bounce, counter-shove and chase.  
 

 For example, 〈b, b, b〉 describes a shove. The actor approaches the target at a greater velocity than the  
target, closing the distance between the two bodies. As it nears the target, the actor slows, decreasing its  
velocity to match that of the target. Trajectory b of the before phase in Figure 9 illustrates these dynamics,  
showing the decrease in relative velocity, along with decrease in distance. At contact, the relative velocity  
is near or equal to zero. During the contact phase, the actor rapidly imparts more energy to the target in  
a short amount of time, as illustrated by b of the during/contact phase.  And after breaking-off contact  
with the target, the agent rapidly decreases its velocity while the target moves at a greater velocity due to  
the energy imparted it.  

 
With this three-phase representation scheme, we define six more interaction types corresponding to 

common English verbs:  

•  Push 〈b, a, a〉 - begins like shove, but at contact relative velocity is near or equal to zero and the actor  
smoothly imparts more energy to the target; after breaking contact, the agent gradually decreases  
its velocity.  

•  Hit 〈c/d, c, c〉 - may begin with the actor already at high velocity relative to the target or increasing in 
relative velocity, and thus is characterized by c or d in the before phase.  

•  Harass 〈c/d, c, d〉 - is similar to a hit, except the after-phase involves the actor quickly recovering its 
speed and moving back toward the target, not allowing the distance between the two to get very large 
(the d in the after phase). Harass highlights that interactions may be cyclic: the after phase of one epoch 
blends into the before phase of the next.  

•  Bounce 〈c/d, d, e〉 - along with counter-shove, bounce involves the target making a more reactive 
response to the actor’s actions. Bounce begins like a hit or harass, but at contact, the target transfers a 
large amount of energy back to the actor.  
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•  Counter-shove 〈b/c/d, e, e〉 - is a version of a shove where the target imparts energy to the actor.  

•  Chase 〈a, −, −〉 - involves the actor moving toward the target, closing the distance between the two, but 
never quite making contact, so the during and after phases are not relevant. This is depicted as the 
circular trajectory a in the before phase.  

 
9.2  Maps and Intentions  

Suppose at a party a drunk man pats you on the back a little too hard, knocking you forward.  Is this a  
pat gone awry, or a not-too-subtle aggression? You don’t know. You don’t know his intention. Figure 10  
shows two representations of the interaction.  The actual trajectory is the same in both: His hand makes  
contact with your back at a relative velocity greater than zero, and it transfers a considerable amount of  
energy to your back. The difference between the representations is the mans goal regions. On the left, you  
see a benign pat gone wrong.  The goal region for relative velocity (the shaded area in the before phase)  
is considerably lower than the one the man actually generated (he’s drunk, after all).  The trajectory for  
energy transfer and displacement of your back falls well outside his goal region, also. On the right, however,  
the man generates the relative velocity profile that he intends, and he hits you as hard as he intends, and  
you are knocked forward as far as he intends.  

 

 
 

before during before during 
energy energy 
transferred transferred 

                                          relative                                                                                 relative 
                                          velocity                                                                                velocity 

 
 
 
0 0 

point of distance from point of distance from 
contact point of contact contact point of contact 

 
Figure 10: Intentions can be represented as regions of maps.  

 

 

Generally, you don’t know the intentions of other parties, so you cannot be sure that “hit” is the 
correct verb to describe an interaction like this.  But sometimes, dynamics alone are sufficient to infer 
intent, albeit heuristically.  If the man doesn’t intend to hurt you, then he will probably try to modulate his 
arm movement when he realizes it is too fast.  But what if he actually increases his arm speed as he 
approaches you? Then it requires uncommon charity to excuse his behavior as accidental.  

 
Jean will eventually be able to infer the intentions of others by imagining the regions of their maps 

that they intend to occupy.  
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9.3 Maps and Planning 
While it is sometimes difficult to infer the intentions of others, one usually knows one’s own. So when one  
engages in an activity, one has a map in mind with normative regions that represent goals, failures, and 
warnings of failures. Recalling that maps can be re-represented as finite state machines, such as Figure 7,  
we can imagine planning maps with a Partially Observable Markov Decision Process (POMDP) method or 
something similar. A more psychologically plausible method is means-ends analysis to generate sequences of 
actions, which are then learned as gists. Means-ends analysis is well-known to underlie a vast range of 
human problem solving behavior [23].  It requires a model of the effects of actions called an operator-
difference table. In several earlier projects we learned operator-difference tables, based on maps, for a mobile 
robot [26, 11]. We are eager to reprise this work in the Jean project.  
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