
Tim Oates and
Department,

Cohen
Computer Science EGRC

University of Massachusetts
Box 34610

Amherst, MA 01003-4610
oates&s.umass.edu, cohen@lcs.umass.edu

Abstract

Providing a complete and accurate domain model
for an agent situated in a complex environment can
be an extremely difficult task. Actions may have
different effects depending on the context in which
they are taken, and actions may or may not induce
their intended effects, with the probability of success
again depending on context. We present an algo-
rithm for automatically learning planning operators
with context-dependent and probabilistic effects in en-
vironments where exogenous events change the state
of the world. Empirical results show that the algo-
rithm successfully fh-rds operators that capture the
true structure of an agent’s interactions with its en-
vironment , and avoids spurious associations between
actions and exogenous events.

Introduction
Research in classical planning has assumed that the
effects of actions are deterministic and the state of
the world is never altered by exogenous events, sim-
plifying the task of encoding domain knowledge in the
form of planning operators (Wilkins 1988). These as-
sumptions, which are unrealistic for many real-world
domains, are being relaxed by current research in AI
planning systems (Kushmerick, Hanks, & Weld 1994)
(Mansell 1993). However, as planning domains be-
come more complex, so does the task of generating
domain models. In this paper, we present an algo-
rithm for automatically learning planning operators
with context-dependent and probabilistic effects in en-
vironments where exogenous events change the state
of the world.

We approach the problem of learning planning op-
erators by first defining the space of all possible op-
erators, and then developing efficient and effective
methods for exploring that space. Operators should
tell us when and how the state of an agent’s world
changes in response to specific actions. The degree
to which an operator chosen from operator space cap-
tures such structure can be evaluated by looking at
the agent’s past experiences. Has the state of the
world changed in the manner described by the oper-
ator significantly often in the past? Exploration of

operator space is performed by an algorithm called
Multi-Stream Dependency Detection (MSDD) that was
designed to find dependencies among categorical val-
ues in multiple streams of data over time (Qates et al.
1995) (Oates & Cohen 1996). MSDD provides a gen-
eral search framework, and relies on domain knowledge
both to guide the search and reason about when to
prune. Consequently, MSDD finds planning operators
efficiently in an exponentially sized space.

Our approach differs from other work on learning
planning operators in that it requires minimal do-
main knowledge; there is no need for access to advice
or examples from domain experts (Wang 1995), nor
for initial approximate planning operators (Gil 1994).
We assume that the learning agent’s initial domain
model is weak, consisting only of a list of the different
types of actions that it can take. The agent initially
knows nothing of the contexts in which actions produce
changes in the environment, nor what those changes
are likely to be. To gather data for the learning algo-
rithm, the agent explores its domain by taking random
actions and recording state descriptions.’ From the
agent’s history of state descriptions, the learning al-
gorithm produces planning operators that characterize
how the agent’s world changes when it takes actions in
particular contexts.

omain Mode%
Our approach to learning planning operators requires
minimal domain knowledge: we assume that the learn-
ing agent has knowledge of the types of actions that it
can take, the sensors by which it can obtain the state
of the world, and the values that can be returned by
those sensors. With this information, we define a space
of possible planning operators.

The Agent and its Environment
The agent is assumed to have a set of m sensors,
s = (Sl , . . . , ~~‘3, and a set of n possible actions,
A = (al,. . . , a,). At each time step, each sensor pro-
duces a single categorical value, called a token, from a

‘Clearly, random exploration may be inefficient; nothing
in our approach precludes non-random exploration.

Planning 863

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

finite set of possible values. Let x = (ti,, . . . , tik)
be the token values associated with the ith sensor,
and let sf denote the value obtained from sensor si
at time t. Each sensor describes some aspect of the
state of the agent’s world; for example, s2 may in-
dicate the state of a robot hand, taking values from
T2 = (open, closed). The state of the world as per-
ceived by the agent at time t, denoted z(t), is simply
the set of values returned by all of the sensors at that
time. That is, x(t) = {sill < i 5 m) is a state vector.

Agent actions are encoded in a special sensor, s,,
so that si indicates which of the possible actions was
attempted at time t. In general, sa E T&ion =
&(none). For any time step t on which the agent does
not take an action, s”, = none. Actions require one
time step, only one action is allowed on any time step,
and resulting changes in the environment appear a con-
stant number of time steps later. (These restrictions
are not required by the MSDD algorithm, but are in-
stituted for the particular domain of learning planning
operators.) Without loss of generality, we will assume
that the effects of actions appear one time step later.
We assume that the state of the world can change due
to an agent action, an exogenous event, or both simul-
taneously. The latter case makes the learning problem
more difficult.

Consider a robot whose task it is to pick up and
paint blocks. (This domain is adapted from (Kushm-
crick, Hanks, & Weld 1994), where it is used to ex-
plicate the Buridan probabilistic planner.) The robot
has four sensors and can determine whether it is hold-
ing a block (HB), has a dry gripper (GD), has a clean
gripper (GC), and whether the block is painted (BP).
In addition, the robot can take one of four actions. It
can dry its gripper (DRY), pick up the block (PICKUP),
paint the block (PAINT), or obtain a new block (NEW).
In terms of the notation developed above, the robot’s
initial domain model can be summarized as follows:

s = (ACTION, BP, GC, GD, ~3
A= (DRY, NEW, PAINT, PICKUP)

TACTION = (DRY, NEW, PAINT, PICKUP, NONE3
CfBP = (BP, NOT-BP), ~~~ = (GC, NOT-GC)
TGD = {GD, NOT-GD), THB = {HB, NOT433

Planning Operators
Operator representations used by classical planners,
such as STRIPS, often include a set of preconditions,
an add list, and a delete list (Fikes & Nilsson 19’71).
The STRIPS planner assumed that actions taken in
a world state matching an operator’s preconditions
would result in the state changes indicated by the oper-
ator’s add and delete lists without fail. We take a less
restrictive view, allowing actions to be attempted in
any state; effects then depend on the state in which
actions are taken. Specifically, an operator 0 =<
a, c, e, p > specifies an action, a context in which that
action is expected to induce some change in the world’s

state, the state that results from the change, and the
probability of the change occurring. If the state of the
world matches the context c and the agent takes action
a, then on the next time step the state of the world will
match the effects e with probability p.

Contexts and effects of operators are represented as
multitokens. A multitoken is an m-tuple that spec-
ifies for each sensor either a specific value or an as-
sertion that the value is irrelevant. To denote irrele-
vance, we use a wildcard token *, and we define the set
5 = ‘j5~(*3. A multitoken is any element of the cross
product of all of the r; that is, multitokens are drawn
from the set 7;* x . . . x TG. Consider a two-sensor ex-
ample for which Tl = 7i = (A, B). Adding wildcards,

T =T= (A, B , *). The space of multitokens for
this example ((A, B, *3 x (A, B, *3) is the follow-
ingset: ((A A), (A B), (A *), (B A), (B B), (B
I, (A), (* B), (* *I).

An operator’s context specifies a conjunct of sensor
token values that serve as the operator’s precondition.
For any given action, the values of some sensors will
be relevant to its effects and other sensor values will
not. For example, it might be more difficult for a robot
to pick up a block when its gripper is wet rather than
dry, but the success of the pickup action does not de-
pend on whether the block is painted. A multitoken
represents this contextual information as (* * GD *) ,
wildcarding irrelevant sensors (e.g. the sensor that de-
tects whether a block is painted) and specifying values
for relevant sensors (the sensor that detects whether
the gripper is dry).

While contexts specify features of the world state
that must be present for operators to apply, effects
specify how features of the context change in response
to an action. We allow effects to contain non-wildcard
values for a sensor only if the context also specifies
a non-wildcard for that sensor. We also require that
each non-wildcard in the effects be different from the
value given by the context for the corresponding sen-
sor. That is, operators must describe what changes in
response to an action, not what stays the same. This
restriction is similar to Wang’s use of delta-state (Wang
1995), the difference between the states of the world
before and after the execution of an action, to drive
learning of operator effects. Likewise, Benson (Ben-
son 1995) uses differences between state descriptions
to identify the effects of actions when learning from
execution traces generated by domain experts.

Assume that our block-painting robot’s interactions
with the world are governed by the following rules: The
robot can successfully pick up a block 95% of the time
when its gripper is dry, but can do so only 50% of the
time when its gripper is wet. If the gripper is wet, the
robot can dry it with an 80% chance of success. If the
robot paints a block while holding it, the block will
become painted and the robot’s gripper will become
dirty without fail. If the robot is not holding the block,
then painting it will result in a painted block and a

864 Learning

dirty gripper 20% of the time, and a painted block the
remaining 80% of the time. Finally, when the robot
requests a new block, it will always find itself in a state
in which it is not holding the block, the block is not
painted, and its gripper is clean; however, the gripper
will be dry 30% of the time and wet 70% of the time.
This information is summarized in our representation
of planning operators in Figure 1.

<pickup, (* * GD NOT-HB), (* * * HB), 0.95>
<pickup, (* * NOT-GD NOT-HB), (* * * HB), 0.5>
<dry, (* * NOT-GD *), (* * GD *), 0.8>
<paint, (NOT-BP * * *), (BP * * *>, l.O>
<paint, (* GC * HB), (* NOT-GC * *), l.O>
<paint, (* GC * NOT-HB), (* NOT-GC * *), 0.2>
<new, (BP * * *), (NOT-BP * JC *), 1.0>
<new, (* NOT-GC * *), (* GC * *), l.O>
<new, (* * * a, (* * * NOT-HB), l.O>
<new, (* * GD *), (* * NOT-GD *), 0.7>
<new, (* * NOT-GD *), (* * GD *), 0.3>

Figure 1: Planning
robot domain.

operators in the block-painting

D Algorithm
The MSDD algorithm finds dependencies-
unexpectedly frequent or infrequent co-occurrences of
values-in multiple streams of categorical data (Oates
et al. 1995) (Oates & Cohen 1996). MSDD is gen-
eral in that it performs a simple best-first search over
the space of possible dependencies, terminating when
a user-specified number of search nodes have been ex-
plored. It is adapted for specific domains by supplying
domain-specific evaluation functions.

MSDD assumes a set of streams, S, such that the
jth stream, si, takes values from the set T. We
denote a history of multitokens obtained from the
streams at fixed intervals from time tl to time t2
as 31 = (as(t < t < t2). For example, the three
streams shown below constitute a short history of
twelve multitokens, the first of which is (A C B). MSDD
explores the space of dependencies between pairs of

multitokens. Dependencies are denoted prec =$ SUCC,
and are evaluated with respect to 31 by counting how
frequently an occurrence of the precursor multitoken
prec is followed k time steps later by an occurrence
of the successor multitoken succ. k is called the lag
of the dependency, and can be any constant positive
value. In the history shown below, the dependency

(A C *) =$ (* * A) is strong. Of the five times that
we see the precursor (A in stream 1 and C in stream 2)
we see the successor (A in stream 3) four times at a lag
of one. Also, we never see the successor unless we see
the precursor one time step earlier.

Streaml:ADACABABDBAB
Stream 2: C B C D C B C A B D C B
Stream 3: B A D A B D C A C B D A

MSDD performs a general-to-specific best-first search
over the space of possible dependencies. Each node
in the search tree contains a precursor and a suc-
cessor multitoken. The root of the tree is a precur-
sor/successor pair composed solely of wildcards; for
the three streams shown earlier, the root of the tree
would be (* * *> + (* * *). The children of a node
are its specializations, generated by instantiating wild-
cards with tokens. Each node inherits all the non-
wildcard tokens of its parent, and it has exactly one
fewer wildcard than its parent. Thus, each node at
depth d has exactly d non-wildcard tokens distributed
over the node’s precursor and successor.

The space of two-item dependencies is clearly expo-
nential. MSDD performs a systematic search, thereby
avoiding redundant generation without requiring lists
of open and closed nodes. Specifically, the children of a
node are generated by instantiating only those streams
to the right of the right-most non-wildcarded stream in
that node. This method ensures that each dependency
is explored at most once, and it facilitates reasoning
about when to prune. For example, all descendants of
the node (* A * > j (B * * > will have wildcards in
streams one and three in the precursor, an A in stream
two in the precursor, and a B in stream one in the suc-
cessor. The reason is that these features are not to the
right of the rightmost non-wildcard, and as such can-
not be instantiated with new values. If some aspect of
the domain makes one or more of these features un-
desirable, then the tree can be safely pruned at this
node.

Refer to (Qates & Cohen 1996) for a more complete
and formal statement of the MSDD algorithm.

Learning Planning perators with
MSD

To learn planning operators, MSDD first searches the
space of operators for those that capture structure in
the agent’s interactions with its environment; then, the
operators found by MSDD’S search are filtered to remove
those that are tainted by noise from exogenous events,
leaving operators that capture true structure. This
section describes both processes.

First, we map from our operator representation to
MSDD’S dependency representation. Consider the plan-
ning operator described earlier:

<pickup, (* * NOT-GD NOT-BB), (* * * BB), 0.5>

The context and effects of this operator are already
represented as multitokens. To incorporate the idea
that the pickup action taken in the given context is
responsible for the changes described by the effects, we
include the action in the multitoken representation:

(pickup * * NOT-GD NOT-HB) 3 (* * * * HB)

We have added an action stream to the context and
specified pickup as its value. Because MSDD requires
that precursors and successors refer to the same set

Planning 865

of streams, we also include the action stream in the
effects, but force its value to be ** The only item miss-
ing from this representation of the operator is p, the
probability that an occurrence of the precursor (the
context and the action on the same time step) will be
followed at a lag of one by the successor (the effects).
This probability is obtained empirically by counting
co-occurrences of the precursor and the successor in
the history of the agent’s actions (31) and dividing by
the total number of occurrences of the precursor. For
the robot domain described previously, we want MSDD

to find dependencies corresponding to the planning op-
erators listed in Figure 1.

Guiding the Search
Recall that all descendants of a node n will be iden-
tical to n to the left of and including the rightmost
non-wildcard in n. Because we encode actions in the
first (leftmost) position of the precursor, we can prune
nodes that have no action instantiated but have a non-
wildcard in any other position. For example, the fol-
lowing node can be pruned because none of its descen-
dants will have a non-wildcard in the action stream:
(* * * GD *) j (* * jl * *)

Also, our domain model requires that operator effects
can only specify how non-wildcarded components of
the context change in response to an action. That is,
the effects cannot specify a value for a stream that is
wildcarded in the context, and the context and effects
cannot specify the same value for a non-wildcarded
stream. Thus, the following node can be pruned be-
cause all of its descendants will have the value BP in the
effects, but that stream is wildcarded in the context:

(pickup * * GD *) j (* Bp JI * *)
Likewise, the following node can be pruned because all
of its descendants will have the value GD instantiated
in both the context and the effects:

(pickup * * GD *> + (* * * GD *)
The search is guided by a heuristic evaluation func-

tion, f(X9 49 which simply counts the number of times
in 31 that the precursor of n is followed at a lag of
one by the successor of n. This builds two biases into
the search, one toward frequently occurring precur-
sors and another toward frequently co-occurring pre-
cursor/successor pairs. In terms of our domain of
application, these biases mean that, all other things
being equal, the search prefers commonly occurring
state/action pairs and state/action pairs that lead to
changes in the environment with high probability. The
result is that operators that apply frequently and/or
succeed often are found by MSDD before operators that
apply less frequently and/or fail often.

Filtering Returned Dependencies
We augmented MSDD'S search with a post-processing
filtering algorithm, FILTER, that removes operators

that describe effects that the agent cannot reliably
bring about and that contain irrelevant tokens. FIL-

TER begins by removing all dependencies that have
low frequency of co-occurrence or contain nothing but
wildcards in the successor. Co-occurrence is deemed
low when cell one of a dependency’s contingency ta-
ble is less than the user-specified parameter Zozu-c&1.
Those that remain are sorted in non-increasing order
of generality, where generality is measured by sum-
ming the number of wildcards in the precursor and
the successor. The algorithm then iterates, repeat-
edly retaining the most general operator and removing
from further consideration any other operators that it
subsumes and that do not have significantly different
conditional probabilities (measured by the G statistic).
All of the operators retained in the previous step are
then tested to ensure that the change from the con-
text to the effects is strongly dependent on the action
(again measured by the G statistic). When G is used
to measure the difference between conditional proba-
bilities, the conditionals are deemed to be “different”
when the G value exceeds that of the user-specified pa-
rameter sensitivity. We have omitted pseudocode for
FILTER due to lack of space.

Empirical Results
To test the efficiency and completeness of MSDD'S

search and the effectiveness of the FILTER algorithm,
we created a simulator of the block-painting robot and
its domain as described earlier. The simulator con-
tained fives streams: ACTION, BP, GC, GD and HB.
Each simulation began in a randomly-selected initial
state, and on each time step the robot had a 0.1 prob-
ability of attempting a randomly selected action. In
addition, we added varying numbers of noise streams
that contained values from the set T,, = (A, B, C}.
There was a 0.1 probability of an exogenous event oc-
curring on each time step. When an exogenous event
occurred, each noise stream took a new value, with
probability 0.5, from Tn.

The goal of our first experiment was to determine
how the number of nodes that MSDD expands to find
all of the interesting planning operators increases as
the size of the search space grows exponentially. We
ran the simulator for 5000 time steps, recording all
stream values on each iteration. (Note that although
the simulator ran for 5000 time steps, the agent took
approximately 500 actions due to its low probability
of acting on any given time step.) These values served
as input to MSDD, which we ran until it found depen-
dencies corresponding to all of the planning operators
listed in Figure 1. As the number of noise streams, n/,
was increased from 0 to 20 in increments of two, we re-
peated the above procedure five times, for a total of 55
runs of MSDD. A scatter plot of the number of nodes
expanded vs. JV’ is shown in Figure 2. If we ignore
the outliers where n/ = 12 and n/ = 20, the number
of nodes required by MSDD to find all of the interest-

866 Learning

ing planning operators appears to be linear in JV, with while painting and cases in which it was not. The
a rather small slope. This is a very encouraging re- resulting probability is a combination of the probabil-
sult. The outliers correspond to cases in which the ities of having a dirty gripper after painting in each of
robot’s random exploration did not successfully exer- those contexts, 1.0 and 0.2 respectively. Similarly, the
cise one or more of the target operators very frequently. last operator in Figure 3 includes cases in which the
Therefore, the search was forced to explore more of the robot attempted to pick up the block with a wet grip-
vast space of operators (containing 1O24 elements when per (50% chance of success) and a dry gripper (95%
n/ = 20) to find them. chance of success).

Nodes
Expanded

+

10

Noise Streams

15 20

Figure 2: The number of search nodes required to
find all of the target planning operators in the block-
painting robot domain as a function of the number of
noise streams.

In a second experiment, we evaluated the ability of
the FILTER algorithm to return exactly the set of inter-
esting planning operators when given a large number
of potential operators. We gathered data from 20,000
time steps of our simulation, with 0, 5, 10, and 15
noise streams. (Again, the agent took far fewer than
20,000 actions due to its low probability of acting on
any given time step.) For each of the three data sets,
we let MSDD generate 20,000 operators; that is, expand
20,000 nodes. Figure 2 tells us that a search with far
fewer nodes will find the desired operators. Our goal
was to make the task more difficult for FILTER by in-
cluding many uninteresting dependencies in its input.
We used low-cell1 = 6 and sensitivity = 30, and in
all three cases FILTER returned the same set of depen-
dencies. The dependencies returned with nl = 0 are
shown in Figure 3. Note that all of the operators listed
in Figure 1 are found, and that the empirically-derived
probability associated with each operator is very close
to its expected value. For h/ > 0, the noise streams
never contained instantiated values.

Interestingly, the last two operators in Figure 3 do
not appear in Figure 1, but they do capture implicit
structure in the robot’s domain. The penultimate op-
erator in Figure 3 says that if you paint the block with
a clean gripper, there is roughly a 40% chance that the
gripper will become dirty. Since that operator does not
specify a value for the ED stream in its context, it in-
cludes cases in which the robot was holding the block

<pickup, (* * GD NOT-HD), (* * * HD), 0.98>
<pickup) (* * NOT-GD NOT-D), (* * * HD), 0.49>
<dry 9 (* * NOT-GD *), (* * GD *), 0.77>
<paint, (NOT-BP * * *), (BP f * *>, l.O>
<paint, (* GC * HD), (* NOT-GC * *), l.O>
<paint) (* GC * NOT-HB), (* NOT-GC * *), 0.18>
<new, (BP * * *), (NOT-BP * * *), i.o>
<new, (* NOT-GC * *), (* GC * *), 1.0,
<new, 0 * * ml, (* * * NOT-HB), l.O>
<new, (* * GD *>, (* * NOT-GD *), 0.71>
<new, (* * NOT-GD *), (* * GD *), 0.31>
<paint, (* GC * *>, (* NOT-GC * *)$ 0.38>
<pickup, (* * * NOT-HE+), (* * * HD) 0.70>

Figure 3: Operators returned after filtering 20,000
search nodes generated for a training set with ti = 0
noise streams.

elated Work
Existing symbolic approaches to learning planning op-
erators via interaction with the environment have typ-
ically assumed a deterministic world in which actions
always have their intended effects, and the state of the
world never changes in the absence of an action (Gil
1994) (Shen 1993) (Wang 1995). One notable excep-
tion is (Benson 1995), in which the primary effect of
a durative action is assumed to be deterministic, but
side effects may occur with some probability. In con-
trast, the work described in this paper applies to do-
mains that contain uncertainties associated with the
outcomes of actions, and noise from exogenous events.
Subsymbolic approaches to learning environmental dy-
namics, such as reinforcement learning (Mahadevan &
Connell 1992), are capable of handling a variety of
forms of noise. Reinforcement learning requires a re-
ward function that allows the agent to learn a mapping
from states to actions that maximizes reward. Our ap-
proach is not concerned with learning sequences of ac-
tions that lead to “good” states, but rather attempts
to acquire domain knowledge in the form of explicit
planning operators.

Much of the work on learning planning operators
assumes the availability of fairly sophisticated forms
of domain knowledge, such as advice or problem solv-
ing traces generated by domain experts (Benson 1995)
(Wang 1995), or initial approximate planning opera-
tors (Gil 1994). Our approach assumes that the learn-
ing agent initially knows nothing of the dynamics of

Planning 867

its environment. A model of those dynamics is con-
structed based only on the agent’s own past interac-
tions with its environment.

MSDD’S approach to expanding the search tree to
avoid redundant generation of search nodes is similar
to that of other algorithms (Rymon 1992) (Schlimmer
1993) (Riddle, Segal, & Etzioni 1994). MSDD’S search
differs from those mentioned above in that it explores
the space of rules containing both conjunctive left-
hand-sides and conjunctive right-hand-sides. Doing so
allows MSDD to find structure in the agent’s interac-
tions with its environment that could not be found by
the aforementioned algorithms (or any inductive learn-
ing algorithm that considers rules with a fixed number
of literals on the right-hand-side).

Conclusions and Future Wor

In this paper we presented and evaluated an algorithm
that allows situated agents to learn planning operators
for complex environments. The algorithm requires a
weak domain model, consisting of knowledge of the
types of actions that the agent can take, the sensors
it possesses, and the values that can appear in those
sensors. With this model, we developed methods and
heuristics for searching through the space of planning
operators to find those that capture structure in the
agent’s interactions with its environment. For a do-
main in which a robot can pick up and paint blocks,
we demonstrated that the computational requirements
of the algorithm scale approximately linearly with the
size of the robot’s state vector, in spite of the fact that
the size of the operator space increases exponentially.

We will extend this work in several directions. Our
primary interest is in the relationship between explo-
ration and learning. How would the efficiency and com-
pleteness of learning be affected by giving the agent a
probabilistic planner and allowing it to interleave goal-
directed exploration and learning? However, our first
task will be to apply our approach to larger, more com-
plex domains.

Acknowledgements

This research was supported by ARPA/Rome Labo-
ratory under contract numbers F30602-91-C-0076 and
F30602-93-0100, and by a National Defense Science
and Engineering Graduate Fellowship. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for governmental purposes not withstanding
any copyright notation hereon. The views and con-
clusions contained herein are those of the authors and
should not be interpreted as necessarily representing
the official policies or endorsements either expressed
or implied, of the Advanced Research Projects Agency,
Rome Laboratory or the U.S. Government.

References
Benson, S. 1995. Inductive learning of reactive action
models. In Proceedings of the Twelfth International
Conference on Machine Learning, 47-54.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A
new approach to the application of theorem proving
to problem solving. Artificial Intelligence 2(2): 189-
208.
Gil, Y. 1994. Learning by experimentation: Incre-
mental refinement of incomplete planning domains.
In Proceedings of the Eleventh International Confer-
ence on Machine Learning, 87-95.
Kushmerick, N.; Hanks, S.; and Weld, D. 1994. An al-
gorithm for probabilistic least-commitment planning.
In Proceedings of the Twelfth National Conference on
Artificial Intelligence, 1074-1078.
Mahadevan, S., and Connell, J. 1992. Automatic pro-
gramming of behavior-based robots using reinforce-
ment learning. Artificial Intelligence 55(2-3):189-208.
Mansell, T. M. 1993. A method for planning given
uncertain and incomplete information. In Proceedings
of the Ninth Conference on Uncertainty in Artificial
Intelligence, 350-358.
Oates, T., and Cohen, P. R. 1996. Searching for
structure in multiple streams of data. To appear in
Proceedings of the Thbteenth International Confer-
ence on Machine Learning.
Oates, T.; Schmill, M. D.; Gregory, D. E.; and Co-
hen, P. R. 1995. Detecting complex dependencies in
categorical data. In Fisher, D., and Lenz, H., eds.,
Finding Structure in Data: Artificial Intelligence and
Statistic8 V. Springer Verlag.
Riddle, P.; Segal, R.; and Etzioni, 0. 1994. Repre-
sentation design and brute-force induction in a boeing
manufacturing domain. Applied Artificial Intelligence
8: 125-147.
Rymon, R. 1992. Search through systematic set enu-
meration. In Proceedings of the Third International
Conference on Principles of Knowledge Representa-
tion and Reasoning.
Schlimmer, J. C. 1993. Efficiently inducing determi-
nations: A complete and systematic search algorithm
that uses optimal pruning. In Proceedings of the Tenth
International Conference on Machine Learning, 284-
290.
Shen, W.-M. 1993. Discovery as autonomous learn-
ing from the environment. Machine Learning 12(l-
3):143-165.
Wang, X. 1995. Learning by observation and prac-
tice: An incremental approach for planning operator
acquisition. In Proceedings of the Twelfth Interna-
tional Conference on Machine Learning.
Wilkins, D. E. 1988. Practical Planning: Extending
the Classical AI Planning Paradigm. Morgan Kauf-
mann.

868 Learning

