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Abstract 

Providing a complete and accurate domain model 
for an agent situated in a complex environment can 
be an extremely difficult task. Actions may have 
different effects depending on the context in which 
they are taken, and actions may or may not induce 
their intended effects, with the probability of success 
again depending on context. We present an algo- 
rithm for automatically learning planning operators 
with context-dependent and probabilistic effects in en- 
vironments where exogenous events change the state 
of the world. Empirical results show that the algo- 
rithm successfully fh-rds operators that capture the 
true structure of an agent’s interactions with its en- 
vironment , and avoids spurious associations between 
actions and exogenous events. 

Introduction 
Research in classical planning has assumed that the 
effects of actions are deterministic and the state of 
the world is never altered by exogenous events, sim- 
plifying the task of encoding domain knowledge in the 
form of planning operators (Wilkins 1988). These as- 
sumptions, which are unrealistic for many real-world 
domains, are being relaxed by current research in AI 
planning systems (Kushmerick, Hanks, & Weld 1994) 
(Mansell 1993). However, as planning domains be- 
come more complex, so does the task of generating 
domain models. In this paper, we present an algo- 
rithm for automatically learning planning operators 
with context-dependent and probabilistic effects in en- 
vironments where exogenous events change the state 
of the world. 

We approach the problem of learning planning op- 
erators by first defining the space of all possible op- 
erators, and then developing efficient and effective 
methods for exploring that space. Operators should 
tell us when and how the state of an agent’s world 
changes in response to specific actions. The degree 
to which an operator chosen from operator space cap- 
tures such structure can be evaluated by looking at 
the agent’s past experiences. Has the state of the 
world changed in the manner described by the oper- 
ator significantly often in the past? Exploration of 

operator space is performed by an algorithm called 
Multi-Stream Dependency Detection (MSDD) that was 
designed to find dependencies among categorical val- 
ues in multiple streams of data over time (Qates et al. 
1995) (Oates & Cohen 1996). MSDD provides a gen- 
eral search framework, and relies on domain knowledge 
both to guide the search and reason about when to 
prune. Consequently, MSDD finds planning operators 
efficiently in an exponentially sized space. 

Our approach differs from other work on learning 
planning operators in that it requires minimal do- 
main knowledge; there is no need for access to advice 
or examples from domain experts (Wang 1995), nor 
for initial approximate planning operators (Gil 1994). 
We assume that the learning agent’s initial domain 
model is weak, consisting only of a list of the different 
types of actions that it can take. The agent initially 
knows nothing of the contexts in which actions produce 
changes in the environment, nor what those changes 
are likely to be. To gather data for the learning algo- 
rithm, the agent explores its domain by taking random 
actions and recording state descriptions.’ From the 
agent’s history of state descriptions, the learning al- 
gorithm produces planning operators that characterize 
how the agent’s world changes when it takes actions in 
particular contexts. 

omain Mode% 
Our approach to learning planning operators requires 
minimal domain knowledge: we assume that the learn- 
ing agent has knowledge of the types of actions that it 
can take, the sensors by which it can obtain the state 
of the world, and the values that can be returned by 
those sensors. With this information, we define a space 
of possible planning operators. 

The Agent and its Environment 
The agent is assumed to have a set of m sensors, 
s = (Sl , . . . , ~~‘3, and a set of n possible actions, 
A = (al,. . . , a,). At each time step, each sensor pro- 
duces a single categorical value, called a token, from a 

‘Clearly, random exploration may be inefficient; nothing 
in our approach precludes non-random exploration. 
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finite set of possible values. Let x = (ti,, . . . , tik) 
be the token values associated with the ith sensor, 
and let sf denote the value obtained from sensor si 
at time t. Each sensor describes some aspect of the 
state of the agent’s world; for example, s2 may in- 
dicate the state of a robot hand, taking values from 
T2 = (open, closed). The state of the world as per- 
ceived by the agent at time t, denoted z(t), is simply 
the set of values returned by all of the sensors at that 
time. That is, x(t) = {sill < i 5 m) is a state vector. 

Agent actions are encoded in a special sensor, s,, 
so that si indicates which of the possible actions was 
attempted at time t. In general, sa E T&ion = 
&(none). For any time step t on which the agent does 
not take an action, s”, = none. Actions require one 
time step, only one action is allowed on any time step, 
and resulting changes in the environment appear a con- 
stant number of time steps later. (These restrictions 
are not required by the MSDD algorithm, but are in- 
stituted for the particular domain of learning planning 
operators.) Without loss of generality, we will assume 
that the effects of actions appear one time step later. 
We assume that the state of the world can change due 
to an agent action, an exogenous event, or both simul- 
taneously. The latter case makes the learning problem 
more difficult. 

Consider a robot whose task it is to pick up and 
paint blocks. (This domain is adapted from (Kushm- 
crick, Hanks, & Weld 1994), where it is used to ex- 
plicate the Buridan probabilistic planner.) The robot 
has four sensors and can determine whether it is hold- 
ing a block (HB), has a dry gripper (GD), has a clean 
gripper (GC), and whether the block is painted (BP). 
In addition, the robot can take one of four actions. It 
can dry its gripper (DRY), pick up the block (PICKUP), 
paint the block (PAINT), or obtain a new block (NEW). 
In terms of the notation developed above, the robot’s 
initial domain model can be summarized as follows: 

s = (ACTION, BP, GC, GD, ~3 
A= (DRY, NEW, PAINT, PICKUP) 

TACTION = (DRY, NEW, PAINT, PICKUP, NONE3 
CfBP = (BP, NOT-BP), ~~~ = (GC, NOT-GC) 
TGD = {GD, NOT-GD), THB = {HB, NOT433 

Planning Operators 
Operator representations used by classical planners, 
such as STRIPS, often include a set of preconditions, 
an add list, and a delete list (Fikes & Nilsson 19’71). 
The STRIPS planner assumed that actions taken in 
a world state matching an operator’s preconditions 
would result in the state changes indicated by the oper- 
ator’s add and delete lists without fail. We take a less 
restrictive view, allowing actions to be attempted in 
any state; effects then depend on the state in which 
actions are taken. Specifically, an operator 0 =< 
a, c, e, p > specifies an action, a context in which that 
action is expected to induce some change in the world’s 

state, the state that results from the change, and the 
probability of the change occurring. If the state of the 
world matches the context c and the agent takes action 
a, then on the next time step the state of the world will 
match the effects e with probability p. 

Contexts and effects of operators are represented as 
multitokens. A multitoken is an m-tuple that spec- 
ifies for each sensor either a specific value or an as- 
sertion that the value is irrelevant. To denote irrele- 
vance, we use a wildcard token *, and we define the set 
5 = ‘j5~(*3. A multitoken is any element of the cross 
product of all of the r; that is, multitokens are drawn 
from the set 7;* x . . . x TG. Consider a two-sensor ex- 
ample for which Tl = 7i = (A, B). Adding wildcards, 

T =T= (A, B , *). The space of multitokens for 
this example ((A, B, *3 x (A, B, *3) is the follow- 
ingset: ((A A), (A B), (A *), (B A), (B B), (B 
*I, (* A), (* B), (* *I). 

An operator’s context specifies a conjunct of sensor 
token values that serve as the operator’s precondition. 
For any given action, the values of some sensors will 
be relevant to its effects and other sensor values will 
not. For example, it might be more difficult for a robot 
to pick up a block when its gripper is wet rather than 
dry, but the success of the pickup action does not de- 
pend on whether the block is painted. A multitoken 
represents this contextual information as (* * GD *) , 
wildcarding irrelevant sensors (e.g. the sensor that de- 
tects whether a block is painted) and specifying values 
for relevant sensors (the sensor that detects whether 
the gripper is dry). 

While contexts specify features of the world state 
that must be present for operators to apply, effects 
specify how features of the context change in response 
to an action. We allow effects to contain non-wildcard 
values for a sensor only if the context also specifies 
a non-wildcard for that sensor. We also require that 
each non-wildcard in the effects be different from the 
value given by the context for the corresponding sen- 
sor. That is, operators must describe what changes in 
response to an action, not what stays the same. This 
restriction is similar to Wang’s use of delta-state (Wang 
1995), the difference between the states of the world 
before and after the execution of an action, to drive 
learning of operator effects. Likewise, Benson (Ben- 
son 1995) uses differences between state descriptions 
to identify the effects of actions when learning from 
execution traces generated by domain experts. 

Assume that our block-painting robot’s interactions 
with the world are governed by the following rules: The 
robot can successfully pick up a block 95% of the time 
when its gripper is dry, but can do so only 50% of the 
time when its gripper is wet. If the gripper is wet, the 
robot can dry it with an 80% chance of success. If the 
robot paints a block while holding it, the block will 
become painted and the robot’s gripper will become 
dirty without fail. If the robot is not holding the block, 
then painting it will result in a painted block and a 
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dirty gripper 20% of the time, and a painted block the 
remaining 80% of the time. Finally, when the robot 
requests a new block, it will always find itself in a state 
in which it is not holding the block, the block is not 
painted, and its gripper is clean; however, the gripper 
will be dry 30% of the time and wet 70% of the time. 
This information is summarized in our representation 
of planning operators in Figure 1. 

<pickup, (* * GD NOT-HB), (* * * HB), 0.95> 
<pickup, (* * NOT-GD NOT-HB), (* * * HB), 0.5> 
<dry, (* * NOT-GD *), (* * GD *), 0.8> 
<paint, (NOT-BP * * *), (BP * * *>, l.O> 
<paint, (* GC * HB), (* NOT-GC * *), l.O> 
<paint, (* GC * NOT-HB), (* NOT-GC * *), 0.2> 
<new, (BP * * *), (NOT-BP * JC *), 1.0> 
<new, (* NOT-GC * *), (* GC * *), l.O> 
<new, (* * * a, (* * * NOT-HB), l.O> 
<new, (* * GD *), (* * NOT-GD *), 0.7> 
<new, (* * NOT-GD *), (* * GD *), 0.3> 

Figure 1: Planning 
robot domain. 

operators in the block-painting 

D Algorithm 
The MSDD algorithm finds dependencies- 
unexpectedly frequent or infrequent co-occurrences of 
values-in multiple streams of categorical data (Oates 
et al. 1995) (Oates & Cohen 1996). MSDD is gen- 
eral in that it performs a simple best-first search over 
the space of possible dependencies, terminating when 
a user-specified number of search nodes have been ex- 
plored. It is adapted for specific domains by supplying 
domain-specific evaluation functions. 

MSDD assumes a set of streams, S, such that the 
jth stream, si, takes values from the set T. We 
denote a history of multitokens obtained from the 
streams at fixed intervals from time tl to time t2 
as 31 = (as(t < t < t2). For example, the three 
streams shown below constitute a short history of 
twelve multitokens, the first of which is (A C B). MSDD 
explores the space of dependencies between pairs of 

multitokens. Dependencies are denoted prec =$ SUCC, 
and are evaluated with respect to 31 by counting how 
frequently an occurrence of the precursor multitoken 
prec is followed k time steps later by an occurrence 
of the successor multitoken succ. k is called the lag 
of the dependency, and can be any constant positive 
value. In the history shown below, the dependency 

(A C *) =$ (* * A) is strong. Of the five times that 
we see the precursor (A in stream 1 and C in stream 2) 
we see the successor (A in stream 3) four times at a lag 
of one. Also, we never see the successor unless we see 
the precursor one time step earlier. 

Streaml:ADACABABDBAB 
Stream 2: C B C D C B C A B D C B 
Stream 3: B A D A B D C A C B D A 

MSDD performs a general-to-specific best-first search 
over the space of possible dependencies. Each node 
in the search tree contains a precursor and a suc- 
cessor multitoken. The root of the tree is a precur- 
sor/successor pair composed solely of wildcards; for 
the three streams shown earlier, the root of the tree 
would be (* * *> + (* * *). The children of a node 
are its specializations, generated by instantiating wild- 
cards with tokens. Each node inherits all the non- 
wildcard tokens of its parent, and it has exactly one 
fewer wildcard than its parent. Thus, each node at 
depth d has exactly d non-wildcard tokens distributed 
over the node’s precursor and successor. 

The space of two-item dependencies is clearly expo- 
nential. MSDD performs a systematic search, thereby 
avoiding redundant generation without requiring lists 
of open and closed nodes. Specifically, the children of a 
node are generated by instantiating only those streams 
to the right of the right-most non-wildcarded stream in 
that node. This method ensures that each dependency 
is explored at most once, and it facilitates reasoning 
about when to prune. For example, all descendants of 
the node ( * A * > j (B * * > will have wildcards in 
streams one and three in the precursor, an A in stream 
two in the precursor, and a B in stream one in the suc- 
cessor. The reason is that these features are not to the 
right of the rightmost non-wildcard, and as such can- 
not be instantiated with new values. If some aspect of 
the domain makes one or more of these features un- 
desirable, then the tree can be safely pruned at this 
node. 

Refer to (Qates & Cohen 1996) for a more complete 
and formal statement of the MSDD algorithm. 

Learning Planning perators with 
MSD 

To learn planning operators, MSDD first searches the 
space of operators for those that capture structure in 
the agent’s interactions with its environment; then, the 
operators found by MSDD’S search are filtered to remove 
those that are tainted by noise from exogenous events, 
leaving operators that capture true structure. This 
section describes both processes. 

First, we map from our operator representation to 
MSDD’S dependency representation. Consider the plan- 
ning operator described earlier: 

<pickup, (* * NOT-GD NOT-BB), (* * * BB), 0.5> 

The context and effects of this operator are already 
represented as multitokens. To incorporate the idea 
that the pickup action taken in the given context is 
responsible for the changes described by the effects, we 
include the action in the multitoken representation: 

(pickup * * NOT-GD NOT-HB) 3 (* * * * HB) 

We have added an action stream to the context and 
specified pickup as its value. Because MSDD requires 
that precursors and successors refer to the same set 
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of streams, we also include the action stream in the 
effects, but force its value to be ** The only item miss- 
ing from this representation of the operator is p, the 
probability that an occurrence of the precursor (the 
context and the action on the same time step) will be 
followed at a lag of one by the successor (the effects). 
This probability is obtained empirically by counting 
co-occurrences of the precursor and the successor in 
the history of the agent’s actions (31) and dividing by 
the total number of occurrences of the precursor. For 
the robot domain described previously, we want MSDD 

to find dependencies corresponding to the planning op- 
erators listed in Figure 1. 

Guiding the Search 
Recall that all descendants of a node n will be iden- 
tical to n to the left of and including the rightmost 
non-wildcard in n. Because we encode actions in the 
first (leftmost) position of the precursor, we can prune 
nodes that have no action instantiated but have a non- 
wildcard in any other position. For example, the fol- 
lowing node can be pruned because none of its descen- 
dants will have a non-wildcard in the action stream: 
(* * * GD *) j (* * jl * *) 

Also, our domain model requires that operator effects 
can only specify how non-wildcarded components of 
the context change in response to an action. That is, 
the effects cannot specify a value for a stream that is 
wildcarded in the context, and the context and effects 
cannot specify the same value for a non-wildcarded 
stream. Thus, the following node can be pruned be- 
cause all of its descendants will have the value BP in the 
effects, but that stream is wildcarded in the context: 

(pickup * * GD *) j (* Bp JI * *) 
Likewise, the following node can be pruned because all 
of its descendants will have the value GD instantiated 
in both the context and the effects: 

(pickup * * GD *> + (* * * GD *) 
The search is guided by a heuristic evaluation func- 

tion, f(X9 49 which simply counts the number of times 
in 31 that the precursor of n is followed at a lag of 
one by the successor of n. This builds two biases into 
the search, one toward frequently occurring precur- 
sors and another toward frequently co-occurring pre- 
cursor/successor pairs. In terms of our domain of 
application, these biases mean that, all other things 
being equal, the search prefers commonly occurring 
state/action pairs and state/action pairs that lead to 
changes in the environment with high probability. The 
result is that operators that apply frequently and/or 
succeed often are found by MSDD before operators that 
apply less frequently and/or fail often. 

Filtering Returned Dependencies 
We augmented MSDD'S search with a post-processing 
filtering algorithm, FILTER, that removes operators 

that describe effects that the agent cannot reliably 
bring about and that contain irrelevant tokens. FIL- 

TER begins by removing all dependencies that have 
low frequency of co-occurrence or contain nothing but 
wildcards in the successor. Co-occurrence is deemed 
low when cell one of a dependency’s contingency ta- 
ble is less than the user-specified parameter Zozu-c&1. 
Those that remain are sorted in non-increasing order 
of generality, where generality is measured by sum- 
ming the number of wildcards in the precursor and 
the successor. The algorithm then iterates, repeat- 
edly retaining the most general operator and removing 
from further consideration any other operators that it 
subsumes and that do not have significantly different 
conditional probabilities (measured by the G statistic). 
All of the operators retained in the previous step are 
then tested to ensure that the change from the con- 
text to the effects is strongly dependent on the action 
(again measured by the G statistic). When G is used 
to measure the difference between conditional proba- 
bilities, the conditionals are deemed to be “different” 
when the G value exceeds that of the user-specified pa- 
rameter sensitivity. We have omitted pseudocode for 
FILTER due to lack of space. 

Empirical Results 
To test the efficiency and completeness of MSDD'S 

search and the effectiveness of the FILTER algorithm, 
we created a simulator of the block-painting robot and 
its domain as described earlier. The simulator con- 
tained fives streams: ACTION, BP, GC, GD and HB. 
Each simulation began in a randomly-selected initial 
state, and on each time step the robot had a 0.1 prob- 
ability of attempting a randomly selected action. In 
addition, we added varying numbers of noise streams 
that contained values from the set T,, = (A, B, C}. 
There was a 0.1 probability of an exogenous event oc- 
curring on each time step. When an exogenous event 
occurred, each noise stream took a new value, with 
probability 0.5, from Tn. 

The goal of our first experiment was to determine 
how the number of nodes that MSDD expands to find 
all of the interesting planning operators increases as 
the size of the search space grows exponentially. We 
ran the simulator for 5000 time steps, recording all 
stream values on each iteration. (Note that although 
the simulator ran for 5000 time steps, the agent took 
approximately 500 actions due to its low probability 
of acting on any given time step.) These values served 
as input to MSDD, which we ran until it found depen- 
dencies corresponding to all of the planning operators 
listed in Figure 1. As the number of noise streams, n/, 
was increased from 0 to 20 in increments of two, we re- 
peated the above procedure five times, for a total of 55 
runs of MSDD. A scatter plot of the number of nodes 
expanded vs. JV’ is shown in Figure 2. If we ignore 
the outliers where n/ = 12 and n/ = 20, the number 
of nodes required by MSDD to find all of the interest- 
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ing planning operators appears to be linear in JV, with while painting and cases in which it was not. The 
a rather small slope. This is a very encouraging re- resulting probability is a combination of the probabil- 
sult. The outliers correspond to cases in which the ities of having a dirty gripper after painting in each of 
robot’s random exploration did not successfully exer- those contexts, 1.0 and 0.2 respectively. Similarly, the 
cise one or more of the target operators very frequently. last operator in Figure 3 includes cases in which the 
Therefore, the search was forced to explore more of the robot attempted to pick up the block with a wet grip- 
vast space of operators (containing 1O24 elements when per (50% chance of success) and a dry gripper (95% 
n/ = 20) to find them. chance of success). 

Nodes 
Expanded 

+ 

10 

Noise Streams 

15 20 

Figure 2: The number of search nodes required to 
find all of the target planning operators in the block- 
painting robot domain as a function of the number of 
noise streams. 

In a second experiment, we evaluated the ability of 
the FILTER algorithm to return exactly the set of inter- 
esting planning operators when given a large number 
of potential operators. We gathered data from 20,000 
time steps of our simulation, with 0, 5, 10, and 15 
noise streams. (Again, the agent took far fewer than 
20,000 actions due to its low probability of acting on 
any given time step.) For each of the three data sets, 
we let MSDD generate 20,000 operators; that is, expand 
20,000 nodes. Figure 2 tells us that a search with far 
fewer nodes will find the desired operators. Our goal 
was to make the task more difficult for FILTER by in- 
cluding many uninteresting dependencies in its input. 
We used low-cell1 = 6 and sensitivity = 30, and in 
all three cases FILTER returned the same set of depen- 
dencies. The dependencies returned with nl = 0 are 
shown in Figure 3. Note that all of the operators listed 
in Figure 1 are found, and that the empirically-derived 
probability associated with each operator is very close 
to its expected value. For h/ > 0, the noise streams 
never contained instantiated values. 

Interestingly, the last two operators in Figure 3 do 
not appear in Figure 1, but they do capture implicit 
structure in the robot’s domain. The penultimate op- 
erator in Figure 3 says that if you paint the block with 
a clean gripper, there is roughly a 40% chance that the 
gripper will become dirty. Since that operator does not 
specify a value for the ED stream in its context, it in- 
cludes cases in which the robot was holding the block 

<pickup, (* * GD NOT-HD), (* * * HD), 0.98> 
<pickup) (* * NOT-GD NOT-D), (* * * HD), 0.49> 
<dry 9 (* * NOT-GD *), (* * GD *), 0.77> 
<paint, (NOT-BP * * *), (BP f * *>, l.O> 
<paint, (* GC * HD), (* NOT-GC * *), l.O> 
<paint ) (* GC * NOT-HB), (* NOT-GC * *), 0.18> 
<new, (BP * * *), (NOT-BP * * *), i.o> 
<new, (* NOT-GC * *), (* GC * *), 1.0, 
<new, 0 * * ml, (* * * NOT-HB), l.O> 
<new, (* * GD *>, (* * NOT-GD *), 0.71> 
<new, (* * NOT-GD *), (* * GD *), 0.31> 
<paint, (* GC * *>, (* NOT-GC * *)$ 0.38> 
<pickup, (* * * NOT-HE+), (* * * HD) 0.70> 

Figure 3: Operators returned after filtering 20,000 
search nodes generated for a training set with ti = 0 
noise streams. 

elated Work 
Existing symbolic approaches to learning planning op- 
erators via interaction with the environment have typ- 
ically assumed a deterministic world in which actions 
always have their intended effects, and the state of the 
world never changes in the absence of an action (Gil 
1994) (Shen 1993) (Wang 1995). One notable excep- 
tion is (Benson 1995), in which the primary effect of 
a durative action is assumed to be deterministic, but 
side effects may occur with some probability. In con- 
trast, the work described in this paper applies to do- 
mains that contain uncertainties associated with the 
outcomes of actions, and noise from exogenous events. 
Subsymbolic approaches to learning environmental dy- 
namics, such as reinforcement learning (Mahadevan & 
Connell 1992), are capable of handling a variety of 
forms of noise. Reinforcement learning requires a re- 
ward function that allows the agent to learn a mapping 
from states to actions that maximizes reward. Our ap- 
proach is not concerned with learning sequences of ac- 
tions that lead to “good” states, but rather attempts 
to acquire domain knowledge in the form of explicit 
planning operators. 

Much of the work on learning planning operators 
assumes the availability of fairly sophisticated forms 
of domain knowledge, such as advice or problem solv- 
ing traces generated by domain experts (Benson 1995) 
(Wang 1995), or initial approximate planning opera- 
tors (Gil 1994). Our approach assumes that the learn- 
ing agent initially knows nothing of the dynamics of 
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its environment. A model of those dynamics is con- 
structed based only on the agent’s own past interac- 
tions with its environment. 

MSDD’S approach to expanding the search tree to 
avoid redundant generation of search nodes is similar 
to that of other algorithms (Rymon 1992) (Schlimmer 
1993) (Riddle, Segal, & Etzioni 1994). MSDD’S search 
differs from those mentioned above in that it explores 
the space of rules containing both conjunctive left- 
hand-sides and conjunctive right-hand-sides. Doing so 
allows MSDD to find structure in the agent’s interac- 
tions with its environment that could not be found by 
the aforementioned algorithms (or any inductive learn- 
ing algorithm that considers rules with a fixed number 
of literals on the right-hand-side). 

Conclusions and Future Wor 

In this paper we presented and evaluated an algorithm 
that allows situated agents to learn planning operators 
for complex environments. The algorithm requires a 
weak domain model, consisting of knowledge of the 
types of actions that the agent can take, the sensors 
it possesses, and the values that can appear in those 
sensors. With this model, we developed methods and 
heuristics for searching through the space of planning 
operators to find those that capture structure in the 
agent’s interactions with its environment. For a do- 
main in which a robot can pick up and paint blocks, 
we demonstrated that the computational requirements 
of the algorithm scale approximately linearly with the 
size of the robot’s state vector, in spite of the fact that 
the size of the operator space increases exponentially. 

We will extend this work in several directions. Our 
primary interest is in the relationship between explo- 
ration and learning. How would the efficiency and com- 
pleteness of learning be affected by giving the agent a 
probabilistic planner and allowing it to interleave goal- 
directed exploration and learning? However, our first 
task will be to apply our approach to larger, more com- 
plex domains. 
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