
ic esi 
Mark F. Orelup 

Graduate Research Assistant 

John R. Dixon 
Professor 

Mechanical Design Automation Laboratory 
Department of Mechanical Engineering 

University of Massachusetts 
Amherst, MA 01003 

This paper describes the meta-level control system 
of a program (Dominic) for parametric design of 
mechanical components by iterative redesign. We 
view parametric design as search, and thus Dominic 
is a hill climbing algorithm. However, from expe- 
rience with Dominic we concluded that modeling 
engineering design as hill climbing has several limi- 
tations. Therefore, a need for meta-level control 
knowledge exists. To implement meta-level con- 
trol, we have taken the approach of dynamically 
modifying the way hill climbing is performed for 
this task, rather than requiring the addition of 
domain-specific control knowledge. We have iden- 
tified the limitations of hill climbing, constructed 
various generic hill climbing strategies, and devel- 
oped a me&t-strategy to guide the application of the 
strategies. The program monitors its own perfor- 
mance for unproductive efforts and selects among 
different strategies to improve its performance as 
it designs. This met&level control significantly 
improves the performance of the program over the 
performance of an earlier version. 

Engineering design is widely recognized to be an iterative 
process; thus the control of iterative processes is critical 
to progress in developing computational models of design. 
This paper describes a meta-level control system for a pro- 
gram (Dominic) that performs parametric design of 
mechanical components by iterative redesign. We view 
parametric design as search through a design space where 
each point on a hill is a design. From this view, we have 
developed Dominic as a hill climbing algorithm for the 
task of parametric mechanical design. 

Dominic I [Howe %a, Dixon 871 is a domain-indepen- 
dent program generalized from two expert systems [Dixon 
84b, Kulkarni 851. It solves that large class of parametric 
component design problems (i.e., the design variables are 
known, but their values are not) which require essentially 
no conceptual innovation (an initial trial design is readily 
obtainable, and all non-metric decisions have been made, 
such as manufacturing process and material). The inference 
engine of Dominic I implements the iterative redesign mod- 
el of the design process [Dixon 85, Dixon 84a] shown in 
Figure 1, which is a hill climbing algorithm. Though 

Paul R. Cohen 
Assistant Professor 

Experimental Knowledge Systems Laboratory 
Department of Computer and Information Science 

University of Massachusetts 

Melvin K. Simmons 
Artificial Intelligence Branch 

General Electric Corporate Research and Development 
Schenectady, New York 12301 

redesign can follow a number of distinct strategies, only a 
single conservative strategy was employed in Dominic I. 
Dominic I demonstrates a first step towards domain-inde- 
pendence and can be characterized as a task-level architec- 
ture [Gruber 87b]. However, it failed to produce 
acceptable designs in approximately twenty percent of the 
cases on which it was tested. We believe this was primari- 
ly due to the limitations of modeling mechanical design as 
hill climbing. 

Initial Design 

Get Specifications 

Fails 

Done 

Figure 1. Iterative redesign model 

Rather than add domain-specific control knowledge to 
improve performance, we have implemented a domain-inde- 
pendent meta-level control system that controls the appli- 
cation of different generic hill climbing strategies. Thus, 
the second version of the program (Dominic II) has meta- 
level control as depicted in Figure 2. When an examina- 
tion of a history of the design effort by the Performance 
Monitor reveals an unproductive effort, the Strategy Selec- 
tor selects a new redesign strategy from the Library of 
Redesign Strategies to be used in the inference engine. 
Strategy selection is made by a meta-strategy, based in part 
on a history of previous strategies. With this structure, 
Dominic II can recognize when one hill climbing strategy 
is unproductive and will substitute another, more appropri- 
ate one. This implementation of meta-level control main- 
tains the generality of Dominic’s architecture since the 
meta-level control system is independent of any domain. 

Orelup, Dixon, Cohen and Simmons 25 

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved. 



In the remainder of the paper, after a brief overview of 
Dominic’s methodology, the details of Dominic II’s meta- 
level control system are described, its performance on a 
variety of problems in five different domains is presented, 
and its relation to other research in meta-level control is 
discussed. 

2 
Before the Dominic II meta-level control system can be 
described, the basic features of the iterative redesign prob- 
lem formulation embodied in Dominic must be explained 
(for more details see [Howe 86a]). In this section we 
describe how redesign problems are formulated and what 
constitutes a “redesign strategy.” 

2.1 Problem Formulation 
Redesign class problems are structured in the follow- 

ing terms: 
1) Problem Parameters define a problem instance in a 

domain; 
2) Design Variables define a candidate solution. They 

are controlled and their values selected (within their 
limits) by the designer; 

3) Performance Parameters assess the quality of a 
design; 

4) Constraints are required relationships among design 
variables and problem parameters; 

5) A Dependency expresses the expected effect a change 
in a design variable will have on a performance param- 
eter. 

2.2 Quality Assessment 
For each design, levels of satisfaction (excellent, 

good, fair, unacceptable) determine how well a perfor- 
mance parameter meets the desired performance. A quality 
level (excellent, good, fair, poor, unacceptable) for a per- 
formance parameter is then determined by combining its 
level of satisfaction with its degree of importance (high, 
moderate, low). This method places more emphasis on the 
more important performance parameters. The lowest quali- 
ty level of all the performance parameters becomes overall 
design quality level. 

2-3 Redesign Strategy 
A redesign strategy specifies the set of methods that 

perform the following actions at each step of the iterative 
redesign phase: 

1) Select a performance parameter for attention; 
2) Determine a target amount to change the selected per- 

formance parameter; 
3) Select the design variable to effect the desired change 

in the performance; 
4) Determine the amount to change the selected design 

variable; 
5) Decide whether or not to implement the selected 

design variable change. 
Any combination of methods for each step forms a 

redesign strategy. For example, one redesign strategy 
could be replaced by another by simply changing the 

Figure 2. Dominic II architecture 

method that determines how much to change the selected 
performance parameter, say, from “increase one quality lev- 
el” to “increase to the excellent quality level.” Therefore, 
many redesign strategies are possible, and all search the 
design space differently. It should be noted that the 
redesign strategies are defined in generic terms. 

In this section the meta-level knowledge and control sys- 
tem implemented in Dominic II are described in terms of: 
(1) performance monitoring; (2) the unproductive design 
efforts; (3) the redesign strategies; and (4) the meta-strate- 
gY* 

3.1 Over-vie 
In Dominic, design is viewed as a search for solutions 

in a design space whose axes are the design variables and 
whose topology is determined by the varying degrees of 
quality of the performance parameters. Dominic searches 
the design space via an operator (to change one or more 
design variables) and the redesign strategies control the 
application of the operator by determining which design 
variable(s) to change and by how much. Hence, a form of 
me&level control for Dominic is the control of redesign 
strategies. Dominic II monitors its performance by check- 
ing if its designs are improving. If not, normally one of 
the unproductive design efforts (the problems of hill 
climbing quantified for this task) are present, and Dominic 
II selects a different redesign strategy to control its search 
based on the unproductive design effort present and the his- 
tory of the strategies tried. 

With this structure, at the meta-level Dominic is con- 
trolling the application of redesign strategies, or the meth- 
ods by which it designs. In essence, Dominic is adapting 

26 Automat4 Reasoning 



its problem solving approach to the current 
problem as the following paragraphs describe. 

state of the 

The current history of the design effort is the informa- 
tion Dominic II uses to assess its performance. For each 
iteration in the redesign-analysis-evaluate loop Dominic II 
stores the following information to record the current 
design effort: 

1) the design variable that was modified, and by how 
much; 

2) the performance parameter attended to, and the conse- 
quent quality change; 

3) any active constraints; 
4) the current design; 
5) the resulting overall design quality level. 

A time record of the design effort is made by collect- 
ing the above information for a number of iterations. In 
practice, a sufficient number was twice the number of 
design variables. We found that all important information 
for performance monitoring could be found in a time win- 
dow of this duration. 

Performance monitoring is done by making a perfor- 
mance assessment every third iteration - unless a strategy 
change has just been invoked, in which case a grace period 
equal to the duration of a time record is given. A perfor- 
mance assessment is made by first analyzing the sequence 
of overall design quality levels within a time record. If 
the quality has increased by at least one level since the 
beginning of the time record, the program continues with 
the current strategy. If not, Dominic II ascertains if any 
unproductive design efforts are present by comparing the 
information gathered in the time record to the criteria of 
each unproductive design effort described below. If no 
unproductive design effort is discovered, the program con- 
tinues without a strategy change. 

r&s 
Six unproductive design efforts have been identified by 

observing failure casts in Dominic I. They are searched for 
in the time record when lack of overall progress is detect- 
ed by a performance check. The unproductive design 
efforts are described below in terms of the design space. 

1) Creeping: One or more design variables are being 
changed in steady, but ineffectual amounts. This is. 
akin to designing along a ridge in the design space, and 
singular changes in the design variables lead off the 
ridge. 

2) Cycling: The program is producing the same designs 
fairly frequently. This usually signifies that an opti- 
mum has been reached. 

3) Floundering: The design variable changes improve the 
selected performance parameter, but not the overall 
design. This state can be described as a plateau rela- 
tive to the overall design quality or as a highly non- 
linear design space. 

4) Confined: The program is making ineffectual design 
variable changes. The proposed design variable 
changes are being limited by active constraints, or by 
mutually exclusive performance parameters. 

5) Blocked: Constraints are active, or performance 
parameters conflict such that no design variable 
change is allowable. This normally signifies that an 
optimum has been reached. This is also where 
Dominic I must quit. 

6) Constraint-bound: One or more constraints are active, 
which inhibits the program from moving into the part 
of the design space it wants to explore. Constraint- 
bound can be the cause of Confined, Blocked, Creeping 
and Cycling. 

All these unproductive design efforts have operational 
definitions [Orelup 871. For example, the operational defi- 
nition for Creeping is: a design variable has been modified 
monotonically in at least 30% of the iterations in the time 
record, and all its increments/decrements are nearly equal. 

If an unproductive design effort is detected, the Strate- 
gy Selection module selects one of the strategies described 
below. 

Dominic II has six redesign strategies described below 
in terms of hill climbing. Operational definitions in 
terms of the components of a redesign strategy are given in 
[Orelup 871. 

1) Vanilla: This is Dominic I’s original strategy. It is a 
conservative one which seems to work well for many 
applications. It climbs a hill one quality level at a 
time and is never allowed to move down. 

2) Aggressive: This strategy is takes much larger steps 
than Vanilla, and does not consider effects on the 
overall design (i.e., it may climb down or even off 
the hill). 

3) Semi-aggressive: It takes large steps and may move 
down, but not off, a hill. 

4) Re-order-perlformance-parameters: This strategy is 
used to change the order in which the performance 
parameters are selected for attention. 

5) Constraint-adapter: This strategy, used in conjunc- 
tion with an existing strategy, allows Dominic II to 
change more than one design variable at a time so that 
an active constraint is not violated. 

6) Big-jump: This strategy is used to achieve much larg- 
er design variable changes than previously allowed. 

Another strategy used, New-initial-design, is not 
strictly a redesign strategy. It is invoked when the strate- 
gy selector concludes that Dominic II is in a space which is 
no longer useful. 

3. eta-Strategies 
The mapping of unproductive design efforts to strate- 

gies is not one-to-one. Deciding which strategy to imple- 
ment given an unproductive design effort depends on the 
strategy history, specifically on whether or not the unpro- 
ductive design effort has been detected before and, if so, 
what strategy or strategies have been previously imple- 
mented. Therefore Dominic II not only monitors its per- 
formance in design, but also its performance in terms of 
strategy use. 

Heuristic rules of me&strategy have been developed 
for selecting a strategy given an unproductive design 

Orelup, Dixon, Cohen and Simmons 27 



effort. These rules are described in general terms below 
with the unproductive design efforts in which they are 
used. 

1) Creeping: To help Dominic II converge more quickly, 
but avoid bouncing back and forth over the desired val- 
ue, use Big-jump until the design variable is creeping 
in the other direction; at that time invoke Aggressive. 

2) Cycling: To ensure the design found is an optimum 
before trying elsewhere, select for attention any per- 
formance parameters not previously selected in the 
current time record. If this does not break the cycle, 
use the New-initial-design strategy. 

3) Floundering: From the information gathered in the 
time record it is very difficult to tell whether a 
plateau is present or the design space is very non-lin- 
ear. To remedy the plateau case, larger steps should 
be taken (e.g., from Vanilla to Semi-aggressive). For 
the other case, smaller steps should be taken to be 
more sensitive to the design space (e.g., from Aggres- 
sive to Semi-aggressive). If trying both cases did not 
help, make a new initial design. 

4) Confined: To handle conflicting performance parame- 
ters, the program should take larger (but not reck- 
less) steps in hopes that the trade-offs will work out 
more quickly. If this is not the case, then Dominic II 
is better off in another part of the design space (by 
invoking New-initial-design). 

5) Blocked: If a constraint prevented a design variable 
change, then Constraint-adapter should be used. If 
not, or if Constraint-adapter did not work, make a 
new initial design. 

6) Constraint-bound: Activate Constraint-adapter for 
the active constraints unless Constraint-adapter was 
activated for the- same constraints in the previous time 
record. For that case invoke New-initial-design. 

As noted before, Constraint-bound can emulate other 
unproductive design efforts. When this occurs, the Con- 
straint-bound response is run. If the Constraint-bound 
design variables are not the ones creating the other unpro- 
ductive design effort, then the response for the other 
unproductive design effort is run as well. 

Dominic II was tested and compared against Dominic I in 
twenty-seven test cases spanning five different domains: 
hydraulic cylinder (3 cases); I-beam (3 cases); post and 
beam (3 cases); v-belt (10 cases); and solar heating system 
(8 cases). Both programs started from the same initial 
design, in the same strategy, and were given the same num- 
ber of iterations to work a problem. In time comparisons, 
Dominic II normally ran faster (up to twenty-four percent 
faster) than Dominic I, and in the worst case was within 
three percent of Dominic I’s time. 

In each of the test cases for hydraulic cylinder design, 
Dominic I failed to produce an acceptable design. Dominic 
II, however, was able to find at least one acceptable design 
in two of the three cases. 

In I-beam design, in all cases Dominic II converged 
faster than Dominic I (from 15 - 75% fewer iterations to 
reach comparable designs), and Dominic II found an 

“excellent” 
at best. 

design, Dominic I a “fair” design 

In the post and beam domain, Dominic II performed 
much like Dominic I, but was able to find one design more 
in all cases. The post and beam domain is more readily 
solved by decomposition (into a post designer, a beam 
designer, and a manager) than by iterative redesign 
[Verrilli 871. 

V-belt drive design is a good test domain because all 
its design variables are discrete, and the design space has 
many local maxima. In nine out of the ten cases run, 
Dominic II found two or more designs while Dominic I 
could only find one, became Blocked, and quit. In two cas- 
es, Dominic I failed while Dominic II was able to find a 
“fair” design. In six of the ten cases, Dominic II found bet- 
ter designs than Dominic I. 

The solar heating system domain consisted of design- 
ing a space heating system using the F-chart method 
[Beckman 77, Kreith 781. This domain was chosen for its 
large number of design variables (eleven) and directly con- 
flicting performance parameters (initial cost and annual 
savings). In five of the eight cases Dominic II found at 
least one more design than Dominic I, and in three cases 
Dominic II found better designs. 

In summary, by adapting its approach to a design prob- 
lem while designing, Dominic II clearly performs better 
than Dominic I. Dominic II finds more solutions, finds 
better solutions, converges more quickly, and can succeed 
where Dominic I may fail. 

5 
Work in task-level architectures includes [Clancey 85, 86, 
Chandrasekaran 86, Cohen 87, Gruber 87b, Marcus 851. 
These are architectures that are more general than domain- 
specific problems but more specific than weak methods - 
shells with control knowledge for particular tasks. The 
power of these generic architectures lies in their trade-off 
between powerful problem solving and wide applicability, 
and their explicit representation of control knowledge. 
Dominic embodies a task level architecture for performing 
parametric design of mechanical components [Gruber 87b]. 
Though the me&level control system in Dominic II is by 
no means a generic architecture for monitoring and adapt- 
ing to a problem space, it does express the pow- 
er/applicability trade-off. Rather than adding domain 
specific control knowledge to improve performance, the 
me&level control in Dominic II is independent of any 
domain the system is applied to. 

SOAR [Laird 871 is a task-level architecture based on 
search. Depending on the search control knowledge added 
to the base system, SOAR realizes the weak methods such 
as hill climbing, means-ends analysis, alpha-beta search, 
etc. Since many of its subgoals address how to make con- 
trol decisions, SOAR can reflect on its own problem solv- 
ing behavior. SOAR also has a chunking mechanism for 
learning to add to its search control knowledge while it is 
running. The me&level control system of Dominic II is 
in the same spirit as SOAR in that they are both trying to 
mold the search process to the search space. SOAR per- 
forms this through universal subgoaling, while Dominic II 
does it by monitoring its performance and changing its 

28 Automated Reasoning 



strategies for search accordingly. 
Georgeff [Georgeff 831 demonstrates the utility of 

problem specific strategies in heuristic search. He also dis- 
cusses various methods for constructing strategies and how 
meta-level strategies can be used to guide the application 
of object level strategies. In his discussion of meta-level 
strategies, Georgeff anticipates Dominic II: “More general 
meta-level strategies could take account of information 
derived during the search, and could allow for dynamically 
changing lines of reasoning. For example, the lack of suc- 
cess of a strategy may suggest a corrective strategy with 
which to continue.” 

An elegant approach to control is BBl [Hayes-Roth 
851, a domain independent blackboard architecture for con- 
trol. The total system consists of two blackboards, one 
for control and the other for the domain. The control 
blackboard has six levels of abstraction and controls the 
execution of the domain knowledge sources as well as its 
own. The cost-effectiveness of control reasoning using 
BBl has been demonstrated [Garvey 871 though in one 
domain through the addition of domain-specific control 
knowledge. Dominic II has shown the viability of dynami- 
cally modifying the control aspects of a weak method (and 
therefore domain-independent control knowledge) and has 
demonstrated its cost-effectiveness in twenty-seven prob- 
lems spanning five different domains. 

Hudlicka and Lesser [Hudlicka 84.1 describe a system 
which monitors and corrects a program that performs vehi- 
cle monitoring through acoustic signals, called the DMVT 
[Lesser 831. The system uses a causal model of the 
DMVT, which is based on a blackboard architecture, to 
guide diagnosis when the DMVT deviates from expected 
behavior. The aim of the diagnosis is to detect faulty con- 
trol parameter settings or faulty hardware components. 
The meta-level control system in Dominic 11 is very simi- 
lar to Hudlicka and Lesser’s work, though their system is 
more sophisticated. Rather than using a causal model to 
diagnose, Dominic II simply follows a predefined decision 
tree, and the tuning of the system is not as flexible or 
adaptable since individual control parameters are not 
adjusted but the entire problem solving strategy is 
changed. However, from what was learned during this 
research, we believe it is possible to develop a causal mod- 
el between the general symptoms of unproductive design 
efforts and the elements of redesign. This would then lead 
to the fine tuning of strategies as well. 

Domineering [Howe 86b] applies Dominic I to itself, 
that is, to design its own configuration. The five steps of 
redesign are the design variables and the performance 
parameters are measures of performance for Dominic I, 
such as the time required to find a design or the best design 
found. Domineering converges on redesign strategies that 
produce good performance by Dominic I in a specific 
domain. Unfortunately, no formal comparison has been 
made between Dominic II and Domineering. For the pur- 
poses of discussion, however, a few comparisons and specu- 
lations can be made. Dominic II has implicit some of the 
explicit features of Domineering: the performance parame- 
ters of Domineering are implicitly specified in the defini- 
tions of the unproductive design efforts in Dominic II; and 
the dependencies between the aspects of performance and 

the steps of redesign are explicit in Domineering whereas 
they are implicit in Dominic II in the form of the meta- 
strategy. Also note that Domineering attempts to con- 
verge on one redesign strategy that yields good perfor- 
mance in a domain while Dominic II dynamically changes 
the strategies according to the characteristics of the space 
it is in. Though no experiments have been done, we specu- 
late that Dominic II would perform better than Dominic I 
running the strategy that Domineering selects for a domain 
because Dominic II is more flexible and adaptable to the 
design space than Dominic I. A single redesign strategy 
probably could not do well throughout the entire design 
space. 

Dominic is a general hill-climbing algorithm that finds 
satisficing [Simon 811 solutions to design problems in the 
iterative redesign class. Since engineering design is not 
well represented .as hill climbing, the original Dominic 
needed extra control knowledge to improve its perfor- 
mance. This could have been done by adding domain specif- 
ic knowledge, but to maintain the generality of Dominic’s 
architecture for parametric design of mechanical compo- 
nents, we added me&level control knowledge based on 
the idea that the problems that can occur in hill climbing 
can be solved by modifying how the hill climbing is per- 
formed. In other words, when Dominic determines it is 
not designing well, it changes the method by which it 
designs. To implement this idea, we have modeled the lim- 
itations of hill climbing in the form of unproductive 
design efforts; identified numerous, generic strategies for 
hill-climbing in this task; and have constructed a strategy 
to perform the mapping between the two. With the addi- 
tion of this knowledge, Dominic II is able to monitor its 
performance for unproductive design efforts and select 
among different strategies to try to improve its perfor- 
mance as it designs. Thus Dominic II reacts and adapts to 
its environment and shows marked improvement over the 
performance of Dominic I by converging faster, finding 
more designs, finding better designs, and succeeding where 
Dominic I may fail. 

The work reported in this paper was partially funded by 
grants from the General Electric Company and the Nation- 
al Science Foundation to the University of Massachusetts. 

[Beckman 773 W. A. Beckman, S. A. Klein, and A. D. 
Duffie, Solar Heatinp Design by the F-Chart Method, 
Wiley Inter-science Publication, 1977. 

[Chandrasekaran 863 B. Chandrasekamn, “Generic Tasks in 
Knowledge Based Reasoning: High-Level Building 
Blocks for Expert System Design”, IEEE Expert, Fall 
1986, pages 23-30. 

[Clancey 851 W. J. Clancey, “Heuristic Classification”, 
Artificial Intelligence, Vol. 27 (1985) pages 289-350. 

Orelup, Dixon, Cohen and Simmons 29 



[Clancey 861 W. J. Clancey, “From GUIDON to 
NEOMYCIN and HERACLES in Twenty short 
Lessons: ONR final Report 1979-1985”, The AI 
Magazine, August 1986, pages 40-60. 

[Cohen 871 P. R. Cohen, M. Greenberg, and J. DeLiso, 
“Mu: A Development Environment for Prospective 
Reasoning Systems”, Proceedings of the National 
Corgference on Artificial Intelligence, pages 783-788, 
August 1987. 

[Dixon 84a] J. R. Dixon, M. K. Simmons, and P. R. 
Cohen, “An Architecture for Applying Artificial 
Intelligence to Design”, Proceedings of the 21st 
ACM/IEEE Design Automation Conference, 
Albuquerque, NM, June 25-27,1984. 

[Dixon 84b] J. R. Dixon, and M. K. Simmons, “Expert 
Systems for Design: Standard V-Belt Drive Design as 
an Example of the Design-Evaluate-Redesign 
Architecture”, Proceedings of the ASME Computers in 
Engineering Conference, Las Vegas, NV, August 12- 
16,1984. 

[Dixon 851 J. R. Dixon, and M. K. Simmons, “Expert 
Systems for Design: A Program of Research”, ASME 
Paper NO. 85-det-78, presented at the ASME Design 
Engineering Conference, Cincinnati, OH, September 
lo-13,1985. 

[Dixon 871 J. R. Dixon, A. E. Howe, P. R. Cohen, and M. 
K. Simmons, “Dominic I: Progress Towards Domain 
Independence in Design by Iterative Redesign”, 
Engineering with Computers, Vol. 2 (1987), pages 137- 
145. 

[Garvey 871 A. Garvey, C. Cornelius, and B. Hayes-Roth, 
“Computational Costs versus Benefits of Control 
Reasoning”, Proceeding of the National Conference on 
Artificial Intelligence, pages 110-l 15, August 1987. 

[Georgeff 831 M. P. Georgeff, “Strategies in Heuristic 
Search”, Artificial Intelligence, Vol. 20 (1983) 393- 
425. 

[Gruber 87a] T. Gruber, and P. Cohen, “Knowledge 
Engineering Tools at the Architecture Level”, 
Proceedings of the Tenth International Joint 
Conference on Artificial Intelligence, pages 100-103, 
August, 1987. 

[Gruber 87b] T. R. Gruber, and P. R. Cohen, “Design for 
acquisition: Principles of Knowledge-system Design 
to Facilitate Knowledge Acquisition”, International 
Journal for Man-Machine Studies, Vol. 26 (1987) 
143-159. 

30 Automated Reasoning 

[Hayes-Roth 851 B. Hayes-Roth, “A Blackboard 
Architecture for Control”, Artificial Intelligence, 
Vol. 26 (1985) pages 251-321. 

[Howe 86a] A. E. Howe, P. R. Cohen, J. R. Dixon, and 
M. K. Simmons, “Dominic: a Domain Independent 
Program for Mechanical Design”, The International 
Journal for Artificial Intelligence in Engineering, Vol. 
1, No. 1, 1986. 

[Howe 86b] A. E. Howe, “Learning to Design Mechanical 
Engineering Problems”, EKSL. Working Paper 86-01, 
Department of Computer and Information Science, 
University of Massachusetts, Amherst, 1986. 

[Hudlicka 841 E. Hudlicka, and V. Lesser, “Meta-Level 
Control through Fault Detection and Diagnosis”, 
Proceedings of the National Conference on Artificial 
Intelligence, August 1984. 

[Kreith 781 F. Kreith, and J. Kreider, Princinles of Solar 
Engineering, Hempisphere Publishing Corp., 1978. 

[Kulkami 851 V. M. Kulkami, J. R. Dixon, J. E., 
Sunderland, and M. K. Simmons, “Expert Systems for 
Design: The Design of Heat Fins as an Example of 
Conflicting Sub-goals and the Use of Dependencies”, 
Proceedings of the ASME Computers in Engineering 
Conference, Boston, MA, August 4-8,1985. 

baird 871 J. E. Laird, A. Newell, and P. S. Rosenbloom, 
“SOAR: An Architecture for General Intelligence”, 
Artificial Intelligence, Vol. 33 (1987) pages l-64. 

[Lesser 831 V. Lesser, and D. D. Corkill, “The Distributed 
Vehicle Monitoring Testbed: A Tool for 
Investigating Distributed Problem Solving 
Networks”, AI Magazine, Vol. 4, No. 3, Fall 1983. 

[Marcus 851 S. Marcus, J. McDermott and T. Wang, 
“Knowledge Acquisition for Constructive Systems”, 
Proceedings of the Ninth International Joint 
Conference on Artificial Intelligence, pages 637-639, 
August 1985. 

Delup 8’71 M. F. Orelup, “MetaLeve Control in 
Domain Independent Design by Iterative Redesign”, 
Master’s Thesis, Department of Mechanical Engineer- 
ing, University of Massachusetts, Amherst MA, 1987. 

[Simon 811 H. A. S’ u-non, The Sciences of the Artificial, 
2nd edition, Cambridge, MA, The MIT Press, 198 1. 

[Verrilli 8'71 R. J. Verrilli, K. L. Meunier, J. R. Dixon, 
and M. K. Simmons, “A Model for Management of 
Problem-Solving Networks in Mechanical Design”, 
Proceedings of the ASME Computers in Engineering 
Conference, New York, NY, August, 1987. 


