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Abstract

If robotic agents are to act autonomously they must have the
ability to construct and reason about models of their physi-
cal environment. For example, planning to achieve goals re-
quires knowledge of how the robot’s actions affect the state
of the world over time. The traditional approach of hand-
coding this knowledge is often quite difficult, especially for
robotic agents with rich sensing abilities that exist in dynamic
and uncertain environments. Ideally, robots would acquire
knowledge of their environment and then use this knowledge
to act. We present an unsupervised learning method that al-
lows a robotic agent to identify and represent qualitatively
different outcomes of actions. Experiments with a Pioneer-1
mobile robot demonstrate the utility of the approach with re-
spect to capturing the structure and dynamics of a complex,
real-world environment, and show that the models acquired
by the robot correlate surprisingly well with human models
of the environment.

Introduction
If robotic agents are to act autonomously they must have the
ability to construct and reason about models of their phys-
ical environment. In all but the simplest, static domains,
such models must represent the dynamics of environmental
change. For example, because the effects of actions are not
instantaneous, planning to achieve goals requires knowledge
of how the robots actions affect the state of the world over
time. The traditional approach of hand-coding this knowl-
edge is often quite difficult, especially for robotic agents
with rich sensing abilities that exist in dynamic and uncer-
tain environments. Ideally, agents would acquire knowledge
of their environment and then use this knowledge to act.

This paper presents an unsupervised method for learning
models of environmental dynamics based on clustering mul-
tivariate time series. An unsupervised learning approach to
this problem is desirable because, as noted previously, hand-
coding models of dynamic, stochastic environments is a dif-
ficult task, and inadequacies of the encoding undermine the
agent’s autonomy. Experiments with a Pioneer-1 mobile
robot demonstrate the utility of the method and show that
the models acquired by the robot correlate surprisingly well
with human models of the environment.
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Individual time series are obtained by recording the out-
put of a subset of an agent’s sensors. We call these time
seriesexperiences. An example of a sensor subset on the
Pioneer-1 robot is its array of seven sonars. Each sonar re-
turns the distance to the closest object in the direction that
it points. Recording of time series is usually triggered by
events, such as the initiation of a particular action. Each
time a given event occurs, the time series that was recorded
is added to a bucket associated with that event. Once a suf-
ficient number of experiences are recorded, clusters can be
formed. Clustering requires a measure of similarity between
multivariate time series. One such measure that is particu-
larly appropriate for this problem is Dynamic Time Warping
(DTW) (Sankoff & Kruskal 1983). (We discuss DTW in de-
tail in a later section.) Each cluster can then be represented
by a prototype, either the cluster centroid or an average of
its members. This process is depicted graphically in Figure
1.

Cluster prototypes formed in this manner are useful for
a variety of purposes. If the event driving the collection of
time series was the initiation of an action, cluster prototypes
correspond to qualitatively different outcomes of engaging
in that action. As such, they can be used for off-line planning
and for on-line prediction by finding the best partial match
among the prototypes to current sensor readings.

The remainder of the paper is organized as follows. The
next section describes our method for clustering time series
in detail, including a discussion of Dynamic Time Warping,
the particular clustering algorithm used, and prototype for-
mation. We then present an evaluation of the method as ap-
plied to the Pioneer-1 mobile robot. The last two sections
review related work, pointing out the connection between
Dynamic Time Warping and Hidden Markov Models, and
outline future research, respectively.

Clustering Experiences
This section presents our method for unsupervised learning
of models of environmental dynamics based on clustering of
multivariate time series. To ground the discussion, consider
the Pioneer-1 mobile robot. Its sensors include, among oth-
ers, a bump switch on the end of each gripper paddle that
indicates when the gripper hits an object, an infrared break
beam between the gripper paddles that indicates when an
object enters the gripper, and wheel encoders that measure
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Figure 1: The formation of prototypes of qualitatively dif-
ference experiences.

the rate at which the wheels are spinning.
Suppose the robot is moving forward at a fixed velocity.

Collectively, the values returned by the sensors mentioned
above can discriminate many different situations. For exam-
ple, if the robot runs into a large immovable object, such as
a wall, the bump sensors go high and the wheel velocities
abruptly drop to zero. If it bumps into a trash can, which is
large but movable, the bump sensors go high and the wheel
velocities remain constant. If it comes across an object that
can be grasped, the break beam goes high when the object
enters the gripper and there is no change in wheel velocity.
As observers of the robot’s actions, we can label and catego-
rize its experiences. Our goal is to provide mechanisms that
will allow the robot to perform that task by itself.

Let E denote an experience, a multivariate time series
containingn measurements from a set of sensors such that
E = fetj1 t ng. Theei are vectors of values con-
taining one element for each sensor. Given a set ofm ex-
periences, we want to obtain, in an unsupervised manner, a
partition into subsets of experiences such that each subset
corresponds to a qualitatively different type of experience.
Given such a partition, reasoning with entire sets of expe-
riences is unwieldy, so a simpler representation such as the
average experience in a subset is required.

If an appropriate measure of the similarity of two time se-
ries is available, clustering followed by prototype extraction
is a suitable unsupervised learning method for this problem
(see Figure 1). Finding such a measure of similarity is diffi-
cult because experiences that are qualitatively the same may
be quantitatively different in at least two ways. First, they

may be of different lengths, making it difficult or impossible
to embed the time series in a metric space and use, for ex-
ample, Euclidean distance to determine similarity. Second,
within a single time series, the rate at which progress is made
can vary non-linearly. For example, the robot may move
slowly or quickly toward a wall, leading to either a slow
or rapid decrease in the distance returned by its forward-
pointing sonar. In each case, though, then end result is the
same, the robot bumps into the wall. Such differences in
rate make similarity measures such as cross-correlation un-
usable.

The measure of similarity that we use is Dynamic Time
Warping (DTW) (Sankoff & Kruskal 1983). It is ideally
suited for the time series generated by a robot’s sensors.
DTW is a generalization of classical algorithms for compar-
ing discrete sequences (e.g. minimum string edit distance
(Corman, Leiserson, & Rivest 1990)) to sequences of con-
tinuous values. It was used extensively in speech recogni-
tion, a domain in which the time series are notoriously com-
plex and noisy, until the advent of Hidden Markov Models
which offered a unified probabilistic framework for the en-
tire recognition process (Jelinek 1997).

Given two experiences,E1 andE2 (more generally, two
continuous multivariate time series), DTW finds the warping
of the time dimension inE1 that minimizes the difference
between the two experiences. Consider the two univariate
time series shown in Figure 2. Imagine that the time axis of
E1 is an elastic string, and that you can grab that string at any
point corresponding to a time at which a value was recorded
for the time series. Warping of the time dimension consists
of grabbing one of those points and moving it to a new posi-
tion on the time axis. As the point moves, the elastic string
(the time dimension) compresses in the direction of motion
and expands in the other direction. Consider the middle col-
umn in Figure 2. Moving the point at the third time step from
its original location to the seventh time step causes all of the
points to its right to compress into the remaining available
space, and all of the points to its left to fill the newly created
space. Of course, more complicated warpings of the time
dimension are possible, as with the third column in Figure 2
in which four points are moved.

Given a warping of the time dimension inE1, yielding
a time series that we will denoteE 0

1, one can measure the
similarity of E 0

1 andE2 by determining the area between
the two curves. That area is shown in gray in the bottom
row of Figure 2. Note that the first warping ofE1 in which
a single point was moved results in a poor match, one with
a large area between the curves. However, the fit given by
the second, more complex warping is quite good. In general,
there are exponentially many ways to warp the time dimen-
sion of E1. DTW uses dynamic programming to find the
warping that minimizes the area between the curves in time
that is a low order polynomial of the lengths ofE1 andE2,
i.e.O (jE1jjE2j).

DTW returns the optimal warping ofE1, the one that min-
imizes the area betweenE 0

1 andE2, and the area associated
with that warping. The area is used as a measure of simi-
larity between the two time series. Note that this measure
of similarity handles nonlinearities in the rates at which ex-
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Figure 2: Two time series,E1 andE2, (the leftmost column) and two possible warpings ofE1 intoE2 (the middle and rightmost
columns).

periences progress and is not affected by differences in the
lengths of experiences. In general, the area betweenE 0

1 and
E2 may not be the same as the area betweenE 0

2 intoE1. We
use a symmetrized version of DTW that essentially com-
putes the average of those two areas based on a single warp-
ing (Kruskall & Liberman 1983). Although a straightfor-
ward implementation of DTW is more expensive than com-
puting Euclidean distance or cross-correlation, there are nu-
merous speedups that both improve the properties of DTW
as a distance metric and make its computation nearly linear
in the length of the time series with a small constant.

Givenm experiences, we can construct a complete pair-
wise distance matrix by invoking DTWm (m 1)=2 times
(the factor of 2 is due to the use of symmetrized DTW). We
then apply a standard hierarchical, agglomerative clustering
algorithm that starts with one cluster for each experience and
merges the pair of clusters with the minimum average inter-
cluster distance (Everitt 1993). Without a stopping criterion,
merging will continue until there is a single cluster contain-
ing all m experiences. To avoid that situation, we do not
merge clusters for which the mean intercluster distance is
significantly different from the mean intracluster distance as
measured by a t-test.

Finally, for each cluster we select a prototype. Two meth-
ods commonly used are to choose the cluster member that
minimizes the distance to all other members of the cluster,
or to simply average the members of the cluster. The ad-
vantage of the latter method is that it smooths out noise that
may be present in any individual data item. Unfortunately, it
is only workable when the cluster elements are embedded in
a metric space (e.g. Cartesian space). Although we cannot
embed experiences in a metric space, DTW allows us to use
a combination of the two methods as follows. First, we se-
lect the time series that minimizes distance to all other time
series in a given cluster. Then we warp all other patterns into
that centroid, resulting in a set of patterns that are all on the
same time scale. It is then a simple matter to take the aver-
age value at each time point over all of the series and use the
result as the cluster prototype.

Evaluation

We are interested in the results of our clustering algorithm
for two key reasons. First, for the purposes of planning,
we would like clusters to map to action outcomes, so that
each cluster prototype can serve as the basis for an operator
model. Second, we would like agents to be able to acquire
a believable ontology of activity. That is, we would like our
agents to be able to differentiate actions as a human would so
that their representations of outcome are in accordance with
our own. As such, our primary means of evaluating clus-
ter quality is to compare the clusters generated by our au-
tomated system against clusters generated manually by the
experimenter who designed the experiences they comprise.

Data were collected for 4 sets of experiences: 102 expe-
riences with the robot moving in a straight line while col-
lecting data from the velocity encoders, break beams, and
gripper bumper (which we will call thetactile sensors), 102
move experiences collecting data from the Pioneer’s vision
system, including the X and Y location, area, and distance
to a single visible object being tracked (which we will call
thevisualsensors), 50 experiences with the robot turning in
place collecting tactile data, and 50 turn experiences collect-
ing visual data. In each experience, the robot attempted to
move or turn for a duration between 2 and 8 seconds in the
laboratory environment. Visible objects and objects that im-
peded or obstructed the robot’s path were present in many of
the trials.

The labels given to the hand-built clusters generated are
summarized in table 3. In the visual tracking problems, the
clusters correspond to visible objects’ relations to the agent
during activity; the object may move across the visual field
while turning or it may loom while being approached. In the
tactile problems, clusters correspond to the Pioneer’s veloc-
ity and the types of contact made with objects in the envi-
ronment during the activity; heavy objects halt the Pioneer’s
progress, and are labeled “crash”, while light, small objects
merely trigger the break beams and are labeled “push”.

We evaluate the clusters generated by DTW and agglom-
erative clustering with a2 2 contingency table called an



move/tactile turn/tactile move/visual turn/visual
+250 unobstructed +100 unobstructed no object no object
+100 unobstructed +100 never stops heavy noise can’t move
-100 unobstructed +100 bump approach on right pass left to right
-250 unobstructed +100 blocked approach disappear pass right to left
+250 temporary bump +100 temporary bump discover left reverse discover right
+100 temporary bump +100 blocked bump vanish on right discover left
+250 push delayed bump -100 unobstructed vanish on left left to right
+250 delayed bump -100 temporary bump retreat left vanish off right
+100 delayed bump -100 impeded turn discover right vanish off left
+250 crash beam1 -100 blocked approach ahead
+250 squash approach, gets big
+250 push blocked approach on left
+250 push approach, stays small
+100 push
+100 push shallow
+100 blocked
-100 blocked

Figure 3: Outcome labels given to the hand built clusters for each of the 4 experience sets.

accordance table. Consider the following table:

te :te

tt n1 n2

:tt n3 n4

We calculate the cells of this table by considering all pairs
of experiencesej andek, and their relationships in the target
(hand-built) and evaluation (DTW) clusterings. Ifej andek
reside in the same cluster in the target clustering (denoted
by tt), andej andek also reside in the same cluster in the
evaluation clustering (denoted byte), then celln1 is incre-
mented. The other cells of the table are incremented when
either the target or evaluation clusterings places the experi-
ences in different clusters (:tt and:te, respectively).

Cellsn1 andn4 of this table represent the number of ex-
perience pairs in which the clustering algorithms are in ac-
cordance. We calln1 + n4 the number ofagreementsand
n2+ n3 the number ofdisagreements. Theaccordance ratios
that we are interested in aren1

n1+ n2
, accordance with respect

to tt, and n4
n3+ n4

, accordance with respect to:tt.

Table 4 shows the breakdown of accordance for the com-
bination of dynamic time warping and agglomerative clus-
tering versus the ideal clustering built by hand. The column
labeled “#” indicates the difference between the number of
hand-built and automated clusters. In each problem, the au-
tomated algorithm clustered more aggressively, resulting in
fewer clusters. The columns that follow present the accor-
dance ratios for experiences grouped together, apart, and the
total number of agreements and disagreements.

The table shows very high levels of accordance. Ratios
ranged from a minimum of 82.2% for experiences clustered
together (tt) in the move/visual set to 100% for experiences
clustered together in the turn problems. For the turn prob-
lems, the aggressive clustering may account for the hightt
accuracy, causing slightly lower accuracy in the:tt case.

The disparity in the number of clusters suggests that tun-

ing the parameters of the clustering algorithm to produce
more clusters might boost:ttaccuracy while preserving the
tt accuracy. The table for this condition is omitted for the
sake of brevity, but our findings were that tuning the cluster-
ing algorithm in this way leads to a reduction in accuracy in
all but the turn/tactile dataset, whose:tt accuracy increased
7 points.

The failure of this strategy to increase:tt accuracy by
tuning the clustering algorithm to terminate with more clus-
ters indicates that it is not simply a matter of the num-
ber of clusters. Exploration of thett disagreements in the
move/visual data, the problem with the highest error rate,
indicates that 132 out of the 156 errors can be traced to
two clusters in the automatically generated set that were
distributed differently in the target set. The target clusters
were “no object” (no visible object being tracked, some
minor noise) and “heavy noise” (noise makes it unclear
whether anything was being tracked). The automated set had
made the split differently; experiences with any noise were
grouped together from those that had none. The remaining
24 errors were covered by a handful of six or seven expe-
riences that were also attracted into clusters by experiences
the hand builder did not feel were similar.

The problem is rooted in the tendency of greedy cluster-
ing algorithms to suffer fromordering effects(Fisher, Xu,
& Zard 1992). In clustering schemes based on sorting, the
order in which instances are considered biases the clusters
that result. In agglomerative clustering algorithms, the clus-
ters that result are biased by the algorithm’s greedy choice
of always considering merging the lowest distance clusters.
Figure 5 illustrates how the ordering effect works on a 2d
representation of the move/visual data. Because two of the
noisy data are very similar (distance=d2), they are clustered
together early in the clustering process. This early decision
creates two cluster centers that individually attract members
based on the local greedy policy, where a global view (like
our hand-builder’s) would cluster them together.

Fortunately, optimization techniques exist that can re-



# tt tt^te % :tt :tt^:te % Agree Disagree %
Move visual -5 876 720 82.2 4275 4125 96.4 4845 306 94.0
Move tactile -7 443 378 85.3 4708 4468 95.0 4846 305 94.0
Turn visual -5 262 262 100.0 599 571 95.3 833 28 96.7
Turn tactile -6 163 163 100.0 698 593 85.0 756 105 87.8

Figure 4: Accordance statistics for automated clustering against the hand built clustering.
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Figure 5: (a) A 2d representation of experiences. (b) The
ordering effect of greedily merging based on the shorter dis-
tance d2 than the group average distance d1. (c) The most
desirable clustering.

fine initial clusterings to better reflect a global view (Fisher
1996). We have implemented a simple optimization tech-
nique which iteratively reassigns experiences to neighboring
clusters if a cluster is found with a smaller group average
distance than to the one the experience is in. After applying
this optimization technique to the clusters used to generate
table 4, many of the errors in thettcases disappeared: accor-
dance climbed to 91.9% or better in all cases except the:tt
case of turn/tactile, which decreased to below 80%, which
reflects the disparity between the number of clusters gener-
ated by our algorithm and the hand built clustering.

E1

E2

E1

Figure 6: Two time series,E1 andE2, and a possible warp-
ing of E1 into E2 that obscures the salient difference.

The remaining few percent of misses appear to be related
to dynamic time warping’s ability to manipulate the time di-
mension. Figure 6 illustrates two time series that correspond
to the horizontal location of an object on the Pioneer’s visual
plane. In experiencee1, the object comes into view from the
right, passes across, and disappears off the left side of the
visual plane. Experiencee2 represents an object moving in

the opposite direction across the visual plane. Clearly, this is
a salient distinction for many purposes, including planning,
but it is one that DTW is able to obscure by sliding a single
point ofe1 backward in time.

Related Work
The use of DTW as a measure of similarity between mul-
tivariate time series dates back a number of years to early
work in speech recognition (Sakoe & Chiba 1978), al-
though it was ultimately displaced by HMM’s (Jelinek
1997). HMM’s are actually a powerful generalization of
DTW, and recent years have seen renewed interest in DTW
for applications where the full power of HMM’s may not
be required (Berndt & Clifford 1994). That fact notwith-
standing, it is unclear how one would apply standard HMM
algorithms (such as Baum-Welch and Viterbi) directly to
clustering time series. One recent attempt (Smyth 1997)
at that problem is much more complex, both computation-
ally and descriptively, than our application of DTW and
requires a priori knowledge of the number of clusters (al-
though a method for attempting to determine that number is
presented).

Other approaches to measuring similarity between con-
tinuous time series have been proposed in the literature
(Agrawal et al. 1995; Keogh & Pazzani 1998). However,
these approaches are limited to univariate time series and are
therefore not applicable to our problem, in which one sensor
alone is insufficient to discriminate between experiences.

Conclusion
We have presented an approach to clustering the experiences
of an autonomous agent acting in a complex, stochastic en-
vironment. Using Dynamic Time Warping as a measure of
the similarity between time series sensor data, we produced
clusters based on the dynamics of experiences, rather than
static features. We evaluated the effectiveness of the un-
supervised clustering algorithm by measuring the amount of
accordancebetween the clusters it generated and cluster sets
generated by hand as an answer key. Using only Dynamic
Time Warping and agglomerative clustering on 150 trials of
real Pioneer data in a variety of experiences, we measured
82-100% accordance between the automated and hand-built
clusterings. By applying a simple iterative optimization al-
gorithm to the initial clusterings, accordance measures in-
creased to 91.9% and better.

Still, pathological cases exist where Dynamic Time Warp-
ing was able to find a temporal mapping that glossed over
significant differences in time series exist. Though these
cases cover only a small percentage of the robot’s practical



experiences, it is possible to constrain DTW so that these
differences will be felt through the distance metric.

Future work will extend the approach described above in
three ways. First, we plan on extending the autonomy of
our system by utilizing cluster prototypes as bases for plan-
ning models, which will allow the Pioneer-1 agent to create
basic action sequences to achieve sensorimotor goals. Sec-
ond, rather than using each experience in its entirety, we
will develop methods for identifying subsequences within
the experiences that are relevant to the clustering process.
Finally, we intend to leverage the relationship between DTW
and HMM’s to develop a method of clustering time series in
which the output is a set of HMM’s, one for each cluster.
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