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Abstract

Statistical operations are often facilitated by other operations. We can facilitate modeling

operations by testing their input for irregularities and removing problems wherever possible. A

planning representation is well-suited to this task. We describe the representation used in Igor,

a system for exploratory data analysis, and its integration with two modeling systems, Pearl's

IC and Cohen's FBD. We show that introducing outliers into the inputs of the algorithms can

inuence their performance. We demonstrate that a planning representation o�ers a exible

way of integrating outlier detection and removal into the modeling process, taking account of

speci�c characteristics of the modeling operations involved.
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1 Introduction

The techniques of exploratory data analysis (EDA) rely on two general strategies in exploring data:

one generates simplifying descriptions of data, the other extends and re�nes surface descriptions of

data. EDA techniques simplify data by constructing partial descriptions and models that capture

particular characteristics of the data. They make descriptions more e�ective by looking beyond sur-

face descriptions at what is left unexplained. Exploratory strategies generate increasingly detailed,

complementary descriptions of data.

Causal modeling is one approach to describing data. Like many other statistical procedures,

causal modeling algorithms often make strong assumptions about properties of their input data.

We can facilitate modeling operations by testing their input for irregularities (e.g., nonlinearity,

outliers) and removing problems wherever possible. In general, we apply transformations to the

input of an operation to ensure that it corresponds to the requirements of the operation and to

improve the quality of its results.

Igor is a knowledge-based system designed for exploratory statistical analysis of complex systems

and environments [1]. Igor uses a script-based planning representation to guide application of

statistical operations. In Igor models of data are built incrementally and opportunistically, relying

on information acquired during the exploration and modeling process.

In this paper we describe a limited integration of exploration and modeling in Igor. We focus on

a speci�c exploration operation, the detection of outliers in linear relationships, and two modeling

algorithms, Pearl's IC [11] and Cohen's FBD [3]. We demonstrate that a planning representation

o�ers a promising way of integrating exploration into the modeling process. Though the integration

is limited in terms of the range of exploration and modeling operations performed, it shows that the

combination can be pro�table: modeling operations can provide context for exploratory actions;

exploration can test assumptions made by the modeling algorithm.

2 Motivation

A central element of some well-known causal modeling algorithms is the notion of conditional

independence [11]. If X , Y , and Z are disjoint sets of variables, then X and Y are said to be

conditionally independent given Z, i�

I(X;Z; Y ) i� P (x; yjz) = P (xjz)P (yjz).

Informally, if holding Z constant renders X and Y independent, then there can be no direct

inuence between X and Y .

Conditional independence is de�ned on probabilities, or probability distributions. The partial

correlation statistic provides a straightforward way to operationalize the test:

Partial(X; Y jZ) < Threshold! I(X;Z; Y ):

If the partial correlation of X and Y with Z held constant falls below a threshold, then X and

Y are conditionally independent. Thus some implementations of causal modeling algorithms take

a covariance matrix as input and base their conditional independence inferences on the partial

correlations derived from the matrix.

Recall that the correlation coe�cient (and by extension the partial correlation coe�cient) mea-

sures the degree of linear association between variables. Consider the three cases in Figure 1. In

Figure 1(a) the correlation of Y and X is zero, but clearly after an appropriate transformation
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Figure 1: Examples

the correlation would be perfect. In Figure 1(b) the correlation between Y and X is moderate to

high, but would be near zero after �ltering the single outlier. Figure 1(c) shows a strong relation-

ship between Y and X , but the positive correlation would change to a negative correlation after

partitioning on a third variable.

Each of these cases demonstrates that the correlation statistic may not capture the desired

relationship between two variables. If a modeling algorithm uses partial correlations to calcu-

late conditional independence, then the validity of its results depends on properties of the input

variables{in particular, that these sorts of irregularities are not present in the data, either obscuring

existing relationships or inducing spurious relationships.

This discussion should not be taken as criticism of the modeling algorithms; these considerations

lie outside their domain. It is rather recognition of the limits of their applicability. By integrating

data exploration with modeling operations we extend these limits.

3 Igor

Elsewhere [1] we draw an analogy between the process of EDA and planning. Briey:

� Exploratory strategies are plans consisting of sequences of statistical operations; these oper-

ations are actions that transform data relationships.

� As in planning, primitive exploratory operations can be combined in di�erent ways for dif-

ferent e�ects. For example, in considering a relationship between two variables, it makes

a di�erence whether we remove outliers before or after applying a transformation to the

relationship.

� Conversely, abstract statistical operations often decompose naturally into more primitive

operations, just as in hierarchical plan decomposition. For example, the abstract operation of

�tting a robust line to a relationship may expand to partitioning the relationship, calculating

medians, and combining the results.

� Selection of the most e�ective exploratory strategy is akin to selection of an appropriate plan

to satisfy a given goal. We must often evaluate di�erent paths to �nd the most e�ective one.

� Just as plans fail and require repair, an exploratory operation may require iteration for

adequate results. Retrying an operation is analogous to retrying an action as a part of plan

failure recovery. Selecting a di�erent, more promising strategy corresponds to replanning.

Igor uses a script-based planning representation, based on the RESUN signal interpretation

system [2], to guide application of statistical operations. In Igor, sequences of simple operations

are combined for complex e�ect. Results are derived incrementally and opportunistically, based on

constructing and revising plans according to information acquired during the process.
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(define-plan generate-standardized-residuals-plan

:goal (standardized-residuals

?y-variable ?x-variable ?residuals)

:input (y-variable x-variable)

:internal (slope intercept)

:output (residuals)

:grammar (:sequence

simple-linear-regression

generate-residuals

standardize))

Figure 2: Example Script

The data structures manipulated at the lowest level in the planning representation are frames.

A variable is a simple frame; a linear relationship between two variables is a slightly more complex

hierarchy of frames; an annotated causal model is a highly interconnected hierarchy of frames. We

call frames and hierarchies of all types structures.

The primitive operations provided by the representation are called actions. An action is a data

transformation or decomposition of an input structure to an output structure. A log transform is

a simple example of an action; it applies a log function to each element in a sequence and collects

the results. More complex transformations include smoothing, outlier removal, and �t operations.

Each action has an associated goal form and may be triggered by the establishment of a matching

goal.

Actions are combined in scripts. A script is a sequence of subgoals whose associated ac-

tions transform one structure into a more concise, better parametrized, more descriptive structure.

Scripts, like actions, have associated goal forms, and thus may be combined hierarchically to satisfy

the goals of other scripts. Combination of subgoals in a script is governed by the speci�cation of

the script. A script speci�cation de�nes how its subgoals must be satis�ed in order for the top level

goal to be satis�ed. Speci�cation constructs allow sequential combination of subgoals, iteration

over sets of subgoals, conditionalization on tests of variable values, and activation of subgoals in

parallel.

In the example script in Figure 2, the :sequence directive orders the goals simple-linear-regression,

generate-residuals, and standardize. The result of this script is a sequence containing the standard-

ized residuals from a linear regression between two variables.

Scripts and actions control procedural execution in the representation, managed exibly by goal

establishment. These constructs still do not provide the degree of opportunism and context-speci�c

control we associate with exploration, however. For this we rely on two mechanisms that depend

on context, monitoring and focusing.

A strictly goal-driven system can �nd it di�cult to take new structures under consideration

during the search process. A monitor is a goal, active in parallel with the execution of a script, and

matching scripts, which test intermediate results produced. Monitors evaluate the 'interestingness'

of results, taking context information into account, to initiate new directions in the exploration.

Focusing heuristics guide and constrain the exploration process based on local context informa-

tion. Focusing heuristics are activated whenever there is a choice between which goals to pursue

and which scripts to apply; they evaluate the precedence of active goals and the relevance of match-

ing scripts when deciding which scripts should be activated and which ignored. We use focusing
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heuristics to evaluate the cost of pursuing particular search paths. A focusing heuristic is free

to prune the goals or scripts it takes as input, temporarily or permanently. As with monitors, a

focusing heuristic may take advantage of domain-speci�c knowledge in its processing.

4 Integration and Evaluation

We begin by describing the datasets we used for the evaluation. For each algorithmwe then describe

� the modeling algorithm itself,

� outlier detection techniques suited to its operation,

� the plan form of the integrated operations,

� how the integration a�ects performance.

We generated 60 sets of linear structural equations of varying size. For each set of equations

we generated a dataset of 50 tuples. Exogenous variables were sampled from normal distributions.

Endogenous variables were derived according to the structural equations. Error was added to each

variable, sampled from independent normal distributions. By following these procedures we ensured

that the datasets we generated accurately reected the structural equations.

We then perturbed each dataset by adding a single outlier to the 50 tuples. Here an outlier

is a tuple in which each element has been independently sampled from a normal distribution. We

generated outliers at three standard deviation settings: 2.0, 3.0, and 4.0. As this value increases,

we say that the perturbation level of the dataset increases. In the real world such outliers might

plausibly be attributed to measurement error or anomalous experimental conditions.

Our evaluation considered two algorithms, Pearl's IC and Cohen's FBD. We ran the same

procedure on both algorithms. We �rst applied the algorithm to each original dataset to generate

a nominal model. We then generated models for each of the perturbation levels and evaluated

the outlier-data models with respect to the nominal model. Note that we are not evaluating the

algorithms with respect to some true model, but rather only how they are a�ected by the outliers.

We then integrated the modeling algorithm with speci�c outlier detection operations in Igor.

We evaluated the results, the �ltered-data models, with respect to the nominal and outlier-data

models.

4.1 IC

The IC algorithm generates a causal model in the form of a DAG in which nodes represent vari-

ables, edges causal inuences. Links are identi�ed as marked unidirectional, indicating genuine

causation, unmarked unidirectional, indicating potential causation, bidirectional, indicating spuri-

ous association, and undirected, indicating an undetermined relationship. Two models are said to

be identical if they have the same links (edges without regard to direction) and the same uncoupled

head-to-head nodes (converging arrows emanating from non-adjacent nodes, such as a ! c  b.)

A much more complete description is given in [11].

In our evaluation we evaluated the e�ects of perturbation on a model M by means of

� links in M and the nominal model,

� uncoupled head-to-head nodes in M and the nominal model, and

� edges denoted genuine in M and the nominal model.

Running IC on the perturbed datasets1 we produced models which we summarize in Figure

3. The histograms show the cumulative distribution of the ratio of correct links in a model with

1We �xed the separating set size at 1, the partial threshold at 0.1
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Figure 3: IC: E�ect of perturbation on correct link ratio

respect to the nominal model. In other words, we counted the number of links shared between each

model and its nominal model and divided by the total number of links in the nominal model, giving

us one number per model. Thus each bin in the histogram measures the proportion of models with

a correct link ratio equal to or lower than the value on the x-axis.

Ideally each distribution should be as right skewed as possible, with all cases achieving high

correct link ratios. We see by the clustering around 1.0 on the x-axis that the outlier-data models

do tend to be very similar to the nominal models. As the perturbation grows greater, however, the

central location of the distribution decreases while spread increases{outlier-data models are found

farther and farther away from their nominal models. The distributions for other measures behave

similarly.

We can redress these problems by identifying the outliers in the data. The detection procedure

treats variables pairwise. It runs a linear regression and examines the residuals, looking for those

cases which exert undue leverage on the linear relationship between the variables. Such leverage

is indicated by outliers in the standardized residuals. The normal test counts an element (x; y)

as an outlier in the relationship (X; Y ) if its standardized residual falls outside [�2:7;+2:7]. The
fourth-spread test [7] (similar to a quantile test) counts an an element (x; y) as an outlier if its

residual falls more than 3=2dF below or above the fourth spread boundaries, where dF measures

the spread itself. These tests give similar results for our data.

The combination of outlier removal and model construction is managed by incorporating the

call to the IC algorithm in a script, generate-model-plan-A. We make the input exploration and

transformation phase explicit by satisfying the goal explore-input before proceeding with model

construction. The goal explore-input is not speci�c to outlier detection, so that other exploration

operations also apply. Note that the goal representation allows us to use either algorithm, IC or

FBD, in the model building phase, the selection managed by a simple focusing heuristic.

(define-plan generate-model-plan-A

:goal (top-level-build-model

?domain ?variables ?relationships ?context)

:input (domain variables context)

:output (relationships)

:grammar (:sequence

explore-input

build-model))

(define-plan explore-remove-outliers-plan
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Condition Pert Correct% (N) W/C C-ratio G-Same G-Di�

Outlier 2.0 0.87 (31.97) 0.22 0.73 0.40 0.60

Filtered 0.80 (28.78) 0.29 0.57 0.42 0.80

Outlier 3.0 0.81 (29.37) 0.29 0.59 0.31 0.66

Filtered 0.81 (29.47) 0.26 0.60 0.48 0.64

Outlier 4.0 0.75 (27.63) 0.38 0.44 0.19 1.40

Filtered 0.82 (29.55) 0.24 0.62 0.46 0.72

Table 1: IC: Degradation by perturbation level

:goal (explore-input ?variables ?transformed-variables)

:input (x-variable y-variable)

:internal (relationships)

:output (outliers)

:grammar (:sequence

generate-relationships

(:in-parallel (relationships) mark-outliers)

transpose-variables

remove-marked-tuples

transpose-tuples))

In this arrangement control is of the formExamineInput! ConstructModel. Igor acts strictly

as a preprocessor for the IC algorithm, in that outlier detection is managed by a test phase entirely

before the modeling begins. In e�ect we consider exploration a simple extension of the modeling

operation.

Summaries of our evaluation measures are shown in Table 1. Each pair of rows contains mea-

surements of outlier-data and �ltered-data models for each level of perturbation. Correct% is the

mean percentage of correct links, per model, with the total number of correct links in parentheses.

W/C is the ratio of correct links to incorrect links. C-ratio measures the overlap in uncoupled

head-to-head nodes between a outlier-data and �ltered-data model. G-Same and G-Di� measure

the overlap and di�erence between genuine edges in the models.

In Figure 4 we see a more detailed comparison for Correct% (a) and G-Same (b). Along the

x-axis we have increasing perturbation level, along the y-axis the appropriate measurement level.

The lines correspond to the measures for outlier-data models and �ltered-data models, with .90

con�dence intervals. In both cases the downward sloping line belongs to the outlier-data models.

There is a clear degradation for outlier-data models as perturbation increases, while the �ltered-

data models remain relatively insensitive. These results are roughly the same for the other measures

as well.

At the initial perturbation level, the outlier-data models are unexpectedly closer to the nominal

models than the �ltered-data models, sometimes even outperforming the �ltered-data models. We

attribute this to the small size of the datasets: single outliers, both those we have introduced and

those potentially already present in the data, can have a relatively large e�ect on the correlation

between variables.2 Thus removing small numbers of outliers may induce new relationships or

2This indicates that we should examine larger datasets as well. It does not lead us to dismiss these preliminary

results. A larger sample size naturally dilutes the e�ect of a single outlier, but large single outliers or groups of

smaller outliers can still inuence statistical calculations. It also may be that larger samples are simply not available.
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Figure 4: IC: E�ect of perturbation

remove existing ones. As perturbation increases, however, outliers become easier to distinguish.

Outlier detection improves all measurements with further increase in perturbation level.

4.2 FBD

The FBD algorithm, in addition to building qualitative causal descriptions of relationships, es-

timates the strength of relationships. FBD constructs a model iteratively: at each stage FBD

considers a single variable and a set of candidate predictors for it. Filters are applied sequentially

to prune the predictor set. When the �ltering is completed, the algorithm selects another variable

to predict. Here the essential aspects are that (1) FBD proceeds incrementally and (2) FBD's

decisions are dependent upon the same assumptions made by linear regression.

We can measure how much e�ect perturbations have on a model M by measuring

� links in M and the nominal model,

� the di�erence in predictive power in M and the nominal model (�R2),

� the di�erence in estimated correlations in M and the nominal model (�r).

If we perform the data exploration/transformation process entirely before running FBD, as we

did with the IC algorithm, we see improvement in most measures. We can better the results with

a closer integration of model-building and exploration.

In the IC example we detect outliers with respect to linear relationships between pairs of

variables. One of our considerations in choosing the detection mechanism was the nature of the

partial correlation statistic. In general the notion of \outlier" depends on the operation to be

performed. In the case of FBD we can detect outliers by examining the e�ect of removing presumed

outliers on prediction parameters of the partially constructed model.

The diagnostic measure vii (also known as hii) can be used to detect outliers in the predictors

in a regression. vii is the diagonal of the matrix V , where

V = X(XTX)�1XT and Y � Ŷ = (I � V )Y .

Each row of V corresponds to a tuple in the dataset. The matrix V is often called the hat-

matrix, because it gives us a way of calculating Ŷ , the predicted value of the dependent variable,

from Y , the actual value. A larger entry in the diagonal of V indicates a larger contribution of that

In any case, exploration is required to test our assumptions.
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tuple to the predicted value of the dependent variable, and thus greater inuence on the regression

model. (A full discussion of vii is beyond the scope of this paper, but see [4].) We use vii to identify

high leverage cases, those most likely to bias the predictors of a variable in a model.

Rather than running the test on the entire dataset before running FBD, as we did with IC, we

can take advantage of FBD's incremental construction. We can apply the vii test most e�ectively

by including only legal predictors of a given variable, as determined by the modeling �lters, rather

than all variables in the dataset. Thus during the predictor selection process the vii test checks the

set of candidate predictors to see whether any cases might exert undue inuence on the regression.

If so, these cases are removed and FBD continues with its selection. The procedure is repeated for

each predicted variable.

To do this we reimplement the top level control of the FBD algorithm in plan form. Two

loops are involved, the outer loop over predicted variables, the inner loop over �lters on each

variable's potential predictors. The :iterate directive continues until its condition clause evaluates

to nil. Focusing heuristics can control the order in which predicted variables and �lters are selected,

but currently they are selected in a �xed order. We manage outlier detection and removal by a

de�ning a new �lter and letting it execute with the others. When the inner loop completes, the

variable is considered predicted and the next variable is selected. Incremental construction gives us

a completed model when the plan is �nished. Again the goal representation for �lters and model

building makes few assumptions about the particular modeling algorithm or heuristics involved.

(define-plan generate-model-plan-B

:goal (top-level-build-model

?domain ?variables ?relationships ?context)

:input (domain variables context)

:internal (filter predicted-variable)

:output (relationships)

:grammar (:iterate ()

(setf predicted-variable

(select-predicted-variable))

(:sequence

(:iterate ()

(setf filter

(select-filter))

apply-filter)

incremental-build-model))

In this arrangement we see a di�erent view of the process: we no longer have a monolithic

outlier removal operation preceding an atomic modeling operation, but rather an incremental

Transform ! Construct : : :Transform ! Construct : : :. The outlier detection function, im-

plemented as a �lter, merges seamlessly into the model construction process.

Application of outlier removal to FBD gives results similar to those for IC. The summarized

results are shown in Table 2. The Condition column speci�es whether the outlier-data model was

used (Outlier), the model built using the pairwise detection algorithm (Preprocessed), or the model

built interleaving construction with the vii test (Interleaved). W/C is again the ratio of wrong links

to correct links. �R2 measures the di�erence between the R2 calculated for the model and the

nominal model, per predicted variable. �r is similarly the di�erence in correlation between the

model and the nominal model. For both measures, lower values are better.

Figure 5 shows a more detailed comparison between the three conditions for the Correct% mea-

sure. Along the x-axis we have increasing perturbation level, along the y-axis the measurement
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Condition Pert Correct% (N) W/C �R2 �r

Outlier 2.0 0.75 (13.12) 0.47 0.09 11.81

Preprocessed 0.72 (12.42) 0.53 0.09 12.88

Interleaved 0.74 (13.15) 0.47 0.08 11.24

Outlier 3.0 0.73 (12.98) 0.47 0.11 13.28

Preprocessed 0.76 (13.08) 0.45 0.09 15.72

Interleaved 0.78 (13.68) 0.38 0.09 11.53

Outlier 4.0 0.65 (11.58) 0.64 0.13 14.78

Preprocessed 0.76 (13.10) 0.44 0.09 13.33

Interleaved 0.78 (13.71) 0.40 0.08 13.09

Table 2: FBD: Degradation by perturbation level

0.7

0.8

1 2 3

Figure 5: E�ect of perturbations on link ratio
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level. The lines correspond to the measures for outlier-data models, �ltered-data (preprocessed)

models, and �ltered-data (interleaved) models, with .90 con�dence intervals. Here again the down-

ward sloping line belongs to the outlier-data models, and the approximately parallel lines to the

�ltered-data models. The highest performance is achieved in the interleaved case. In summary, we

�nd that applying outlier detection as a preprocessing phase improves FBD's performance as per-

turbation increases. Incremental application improves results yet further, and reduces degradation

for the low perturbation setting.

5 Conclusions

We have approached the integration of statisticalmodeling with transformation operations from the

viewpoint of exploratory data analysis [5, 8, 12], with strong inuences from work in the machine

learning and knowledge discovery in databases literature [10]. We have shown preliminary evidence

that the integration of exploration and model building can be pro�table. We can automate parts

of the data exploration phase necessarily associated with application of a modeling algorithm.

The purpose of this work is not to describe well-known statistical techniques, but rather to show

how their application can be managed in the planning representation, and how control interleaves

exploration and modeling. Lansky has noted that planning meshes well with iterative modeling

because both processes are essentially constructive [9]. Igor's planning representation lets us tai-

lor the combination of transformation operations with modeling operations in a way that takes

advantage of the characteristics of the operations.

One issue we have not addressed is the selection of facilitation operations for particular modeling

operations. Outlier detection/removal is just a single example. Realistically we will transform

highly skewed variables, test whether relationships are approximately linear, ensure that cases in

each variable are independent, and run a variety of domain-dependent tests as well. While we have

mechanisms in place, focusing heuristics, to decide among potentially applicable actions, we have

only begun to examine the knowledge required to make the correct decisions.

There are larger issues we will address in further work, in particular the notion of statistical

strategies [6] in exploration. We hope to incorporate more complex interactions into the exploration

and modeling process. Domain speci�c knowledge plays a strong role in the work of real statisticians;

our work has left issues in representation so far unaddressed.
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