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Abstract

When a plan involves hundreds or thousands of events over time it can be di�cult or impossible

to tell whether those events are unfolding \according to plan" and to assess the impact of dynamic

plan modi�cations. Pathological states may arise in which goals cannot be attained or are attained too

slowly. Plan steering is an agent-based approach to this problem. The agent monitors an unfolding

plan, detects and predicts pathological situations, and develops dynamic plan modi�cations that will

steer the plan around the problem. We present results for a system that performs the related task

of schedule maintenance in the transportation planning domain. We evaluate system performance at

pathology prediction and pathology avoidance and show that the agent, using limited domain knowledge

and simple heuristics, is able to improve throughput signi�cantly. We describe experiments in which

humans perform the same schedule maintenance task both with and without the aid of the agent, and

show that the human and the agent working together achieve better results than either working alone.

This work was supported by ARPA/Rome Laboratory under contract #F30602-91-C-0076.



1 Introduction

Plans formulated to run in the real world will often fail due to the complexity and unpredictability of the

environment. Existing methods to deal with this problem include real time recovery from plan failures [1]

[3] [12] and post-hoc plan repair based on failures observed while executing the plan [9]. Failure recovery

mechanisms, such as replanning, can be expensive, and it may not be feasible to repair a plan by letting

it repeatedly fail. An alternative strategy is to monitor the execution of the plan, attempting to predict

pathological states that make it di�cult or impossible to achieve goals [8]. Doing so admits the possibility

of e�ecting plan modi�cations in real time to avoid pathological states.

Plan steering is a mixed-initiative approach to real time prediction and avoidance of plan failures. A

plan steering system comprises a pathology demon that monitors the execution environment to detect and

predict pathological states, a plan steering agent that evaluates the demon's predictions and formulates

plan modi�cations to avoid predicted pathologies, and a human user who monitors the environment, the

demon, and the agent. The human and the agent work together to steer the plan away from potential

problems by intervening before they develop. The bene�ts of keeping computers in the loop are clear. For

large, complex plans, involving hundreds or thousands of events over time, determining whether events

are unfolding according to plan and assessing the impact of dynamic plan modi�cations are impossible for

humans.

As a �rst step toward plan steering, we built an agent for the related task of schedule maintenance in the

transportation planning domain. We experimentally assessed the performance of the agent at its two primary

tasks: predicting schedule pathologies and formulating schedule modi�cations to avoid those pathologies. In

those experiments the agent was completely responsible for managing the schedule; no human intervention

was allowed. Next, we evaluated the performance of humans at that same task both with and without the

aid of the agent. We show that the agent can help human planners - indeed, working in concert, humans

and an agent perform better than either does alone.

2 The Schedule Maintenance System

The architecture of a generic schedule maintenance system is shown in Figure 1. A pathology demon

monitors the environment as a schedule unfolds, detecting and predicting pathological situations. The

schedule maintenance agent monitors the demon's output and formulates schedule modi�cations that address

the problems found by the demon. A human user evaluates the agent's advice and e�ects schedule changes

when appropriate. The architecture for plan steering is identical, only the task changes.

Dynamic
Schedule
Modifications

Schedule Execution Environment

Pathology Demon

Human User

Schedule Maintenance Agent

Figure 1: Schedule Maintenance Architecture

The task for our system is management of schedules in a simulated shipping network called TransSim.

TransSim is capable of representing most of the objects and constraints in the IFD2 shipping domain provided

by ISX, although we abstract some of those domain features for the sake of simulation speed. A TransSim

scenario consists of ships, ports, cargo, and simple movement requirements (SMRs) for each piece of cargo.

An SMR speci�es the route that a piece of cargo is to take through the network and when it is to begin its

journey. The SMRs of a scenario constitute its schedule and largely determine the behavior of the simulation.

They may be thought of as the schedule generated by a separate scheduling program that must be adhered to

as closely as possible and are based on the TPFDD's of IFD2. The scenarios used in experiments throughout



this paper enforce constraints on the types of cargo that both ships and ports can accommodate. A typical

scenario consists of seven ports, twenty eight ships, and forty SMRs.

If many SMRs reference any one port then it is likely that a bottleneck will develop at that port. Ports

are limited resources and ships must queue for service when a port is being used to load or unload another

ship's cargo. A bottleneck exists at a port when the docking queue at that port is \large" and results in

reduced throughput. The goal of the schedule maintenance system is to maximize throughput. It does

so by predicting the occurrence of bottlenecks at each port in a scenario and making changes to SMRs

where appropriate. The system attempts to minimize the number of changes to preserve as much of the

structure imposed by the initial SMRs as possible. These two goals are often at odds with one another so

an appropriate balance must be found.

A pathology demon has been implemented to monitor TransSim as cargo is shipped about. It uses simple

domain information to predict when and where in the network a bottleneck is likely to arise. The demon

looks at the current state of each port and ships that are traveling in channels toward the port, and assigns

a probability to each possible state of the port on each day out to a horizon. That is, the demon only

uses information local to a given port. Resource-based schedule revision with local information was used

successfully in [10]. The schedule maintenance agent combines the demon's predictions for multiple days in

the future to determine which ports are likely to become substantial problems. The agent then uses simple

heuristics to generate advice that, when implemented, will either alleviate or avoid the predicted bottleneck.

This may be contrasted with reactive approaches, such as [7], that respond to unexpected events at the time

they occur.

Currently, the only advice the agent o�ers is based on a simple rerouting heuristic. If a piece of cargo

is being loaded onto a ship bound for a potential bottleneck, the agent changes the cargo's SMR so that it

travels to the port closest to the original destination that is not problematic. This seems to be a reasonable

approach in that rerouted cargo continues to make progress toward its destination. We assume that ports

that are close geographically are \equivalent" in some sense.

3 Performance Assessment of System Components

We now focus on assessing the ability of our system to manage the TransSim domain. First, we will

investigate performance of the pathology demon as inuenced by environmental factors. Then, we will

determine whether the agent's advice is helpful, harmful, or neither. We will also explore how much of the

bene�t is due to the intelligence built into the agent and how much is due to other factors. Finally, we

want to ascertain to what extent environmental factors, such as pathology severity and problem complexity,

a�ect the agent's performance. The general procedure is to run several simulations in each of a variety

of experimental conditions, taking several dependent cost measures which are then compared to determine

the e�ect of the condition [5]. Experiments in which humans manage the TransSim domain both with and

without the aid of the agent are presented in Section 4.

3.1 Pathology Demon

The pathology prediction demon models each ship as a probability distribution of arrival times. Combining

these distributions with the current state of each port, the demon arrives at a predicted docking queue

length for each port. The model is similar to that used in [4] for exploring the e�ects of resource allocation

decisions. Long docking queues indicate the presence of a bottleneck. Several factors a�ect the accuracy of

the demon's predictions. They are (1) the distance into the future for which predictions are made, (2) the

certainty of the demon's knowledge about ship arrivals, and (3) a prediction threshold that controls how

aggressive the demon is at making predictions (low values are aggressive, high values are conservative). We

expect predictions to be less accurate when made far into the future or when there is a lot of variance in ship

arrivals. There should be an optimal prediction threshold, at least for a given level of the other two factors.

The accuracy of the demon was explored by running a fully factorial experiment with ten simulations

for each of three levels of the factors (a total of 270 trials). The demon's predictions for each port as well

as the actual state of each port were recorded and average squared prediction error was calculated for each

trial. For predictions 2, 4, and 6 days into the future, average squared error was 0.137, 0.244, and 0.214;

increasing but not monotonically. Though the e�ect of variance in the demon's knowledge about ship arrivals
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was not a signi�cant main e�ect, it did interact signi�cantly with prediction distance. High variance had an

increasingly adverse e�ect on error as prediction distance was increased. Finally, plotting error at several

prediction threshold values resulted in a bowl shaped curve with 0.2 being the optimal threshold.

3.2 Measures of Cost

Having established some inuences on demon accuracy, we turned next to the schedule maintenance agent

and its performance. We de�ned several measures of cost associated with a single run of TransSim. These

were used to evaluate the e�ect of moving from one experimental condition to another.

Bottleneck Predictions The sum over all days of the number of ports marked as potential trouble spots

by the demon for a given day.

Cargo Transit The sum over all pieces of cargo of the number of days from when the item �rst arrived at

its port of embarkation until it reached its �nal destination.

Idle Cargo Cargo is considered idle if it is ready to be loaded onto a ship but none is available or if it is

sitting in a ship queued for docking. This measure is the sum over all days of the number of pieces of

idle cargo.

Queue Length Each port has a limited number of docks. Ships waiting to dock are placed in the docking

queue. This measure is the sum over all days and all ports of the number of ships queued for docking.

Simulated Days The number of simulated days required to ship all cargo to its �nal destination.

Ship Utility Ships may travel empty when called from one port to another to service cargo. This measure

is the sum over all simulated days of the number of ships traveling empty on a given day.

When the agent is not o�ering advice, we expect a positive correlation between Bottleneck Predictions and

many of the other measures such as Queue Length. If the demon is predicting many bottlenecks, and the

agent is not doing anything to avoid them, then if the demon is accurate our other cost measures will rise

accordingly. The agent was designed to predict and avoid large docking queues so we expect its actions to

reduce Queue Length. One extreme way to reduce Queue Length is to let there be only one ship traveling

at any time. Both Cargo Transit and Simulated Days provide another view into the agent's performance on

a global scale so we may ensure that it is not adopting a similarly pathological strategy.

3.3 Agent Advice vs No Advice

Several experiments were run to evaluate the agent's performance.1 They typically consisted of two condi-

tions. In the �rst condition the agent monitors a running simulation but o�ers no advice. In the second

condition the agent monitors a running simulation and implements any advice that it may have. The goal

in each of these experiments is to determine how the agent's performance compares to doing nothing. We

assess the impact of the agent's actions by performing an analysis of variance (ANOVA) of each cost measure

on whether or not agent advice is used. If the result is signi�cant then the actions of the agent a�ect the cost

measure and inspection of cell means will indicate if it is a bene�cial e�ect. A total of ten trials (simulations)

were run in each condition. Also, we allowed any type cargo to be carried by any type of ship. Experiments

with more constraints are described in Section 3.5.

By varying the number of SMRs for a simulation we have some crude control over the frequency and

duration of bottlenecks. Few SMRs results in low tra�c intensity and few bottlenecks. Many SMRs has the

opposite e�ect. Therefore, we ran an advice vs. no advice experiment at each of three levels of the number

of SMRs in the scenario. The results for the 35 SMR case are shown below in Table 1.

By allowing the agent to follow its own advice, we obtain signi�cant reductions in all cost measures except

Ship Utility. In fact, the percent reduction in all cost measures was largest in the most pathological 35 SMR

case (compared to the other cases which are not shown). The agent achieved its design goal of reducing

queue length. In doing so, it reduced the amount of time cargo spends sitting idle and actually increased the

1All experiments and analysis utilized CLASP/CLIP [2].
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Cost p Value No Advice Mean Advice Mean % Reduction

BP 0.0 232 169.9 26.8

CT 0.0 2659.9 2261.8 15.0

IC 0.0 1542.9 1208.2 21.7

QL 0.0 911.1 598.5 34.3

SD 0.0325 168.2 149 11.4

SU 0.018 181.1 216.1 -19.3

Table 1: E�ects of Agent Advice - 35 SMRs

speed with which cargo travels to its destination locally (decreased Cargo Transit) and globally (decreased

Simulated Days).

To investigate the e�ects of increasing the complexity of the task on the agent's ability to perform, a

similar experiment was run with a larger scenario. The number of ports and ships were doubled (to 10 and

40 respectively) and the number of SMRs was set at 60. Ten trials per condition were run. Again, we obtain

signi�cant reductions in all cost measures except Ship Utility. Comparing percentage reductions with results

from the previous experiments, we found that increasing the complexity of the task increases the extent to

which the agent is able to help.

Cost p Value No Advice Mean Advice Mean % Reduction

BP 0.0 283.5 204.6 27.8

CT 0.0 4284.6 3523.7 17.7

IC 0.0 2222.8 1577.6 29.0

QL 0.0 1406.7 817.4 41.9

SD 0.0 189.2 157.5 16.8

SU 0.5178 320.35 330.6 -3.2

Table 2: E�ects of Agent Advice - Large Scenario

The obvious conclusion is that in a wide variety of conditions, the agent is able to reduce the costs

associated with a simulation. Neither pathology intensity nor problem complexity seem to nullify its ability

to perform. In fact, the agent shines most brightly in precisely those situations where it is needed most,

highly pathological and large/complex scenarios.

3.4 Control Condition - Random Advice

An experiment was run to determine the e�ects of demon accuracy on agent performance. The factors that

a�ect demon accuracy (see Section 3.1) were varied with the surprising result that there was no signi�cant

impact on the e�cacy of the agent. If the agent performs equally well with good and bad predictions of

bottlenecks, then perhaps its ability to reduce costs is due to shu�ing of routes, not to its ability to predict.

Random rerouting, periodically picking a piece of cargo and sending it on a newly chosen random route,

may be as good as the agent. Random rerouting has the advantage of tending to evenly distribute cargo

over the network, minimizing contention for any one port. The disadvantage is that it destroys the structure

inherent in the initial schedule.

To investigate the utility of random advice, we ran an experiment in which the agent, with varying fre-

quency, rerouted a randomly selected piece of cargo. This was done with no regard for bottleneck predictions.

We varied the probability of performing a reroute on each day over four values: 5%, 15%, 25%, 35%. As

with the advice vs. no advice experiments, the number of SMRs in the simulation was varied to get a feel

for how these e�ects changed with pathology intensity. As expected, cost measures decrease with increasing

frequency of random rerouting. Random rerouting can be used to improve throughput if one is willing to

pay for incremental improvements with additional disruption to the initial schedule.
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The most important result of this experiment is that the agent performs better than random rerouting

when both throughput and the number of reroutes are considered. Regardless of pathology intensity, there

existed a level of random rerouting that matched the performance of the agent when measured in terms of

throughput. However, at that level of performance the agent always used signi�cantly fewer reroutes. For a

given level of throughput, the agent uses a few well directed rerouting decisions rather than large numbers

of random ones, thereby doing less violence to the initial schedule.

The same large scenario described previously was used to investigate the e�ects of problem size and

complexity on the e�cacy of random advice. The results here are striking. Increasing the amount of random

advice seems to help monotonically. The amount of rerouting performed by the agent was statistically

equivalent only to the lowest level of random rerouting. In that condition, the agent's performance is

signi�cantly better than random advice; its domain knowledge is paying great rewards. Looking at the data

another way, the agent performed equally as well as the highest level of random rerouting with 34% fewer

reroutes.

Our initial proposition that random rerouting would help to lower the various cost measures was borne

out. In fact, it seems that more random rerouting is better than less, except perhaps in highly bottlenecked

scenarios. There existed some level of randomness that equaled the performance of the agent for each of the

previous experiments. However, the agent typically rerouted many fewer pieces of cargo than the equivalent

level of randomness, thereby preserving more of the structure of the simulation. Finally, it appears that for

large/complex scenarios the di�erence between randomness and the agent is more pronounced.

3.5 Highly Constrained Scenarios

To increase the realism of the agent's task, several constraints were added to the scenarios. There are three

types of cargo: CONT (containerized), GENL (breakbulk), and RORO (roll on, roll o�). Rather than using a

single cargo type, we used multiple types and limited the cargo handling capabilities of both ships and docks.

Now for cargo to ow through the network, it must match in type with any ship that is to carry it and any

dock where it will be handled. We ran agent advice vs. random advice experiments under these conditions

after modifying the agent to consider the additional constraints. Whenever random advice generated an

incompatible routing assignment, such as sending CONT cargo to a port only equipped to handle GENL, it

was penalized with a short delay for the o�ending piece of cargo. The results are presented below. When a

Sche�e' test2 determines that one of the means at a random level is signi�cantly di�erent from the mean at

the agent advice level, an '*' is used to mark the mean at the random level.

Level Reroutes CT IC QL

Real Advice 9.6 1833.0 990.9 488.5

Random 5 4.6 * 2010.2 * 1135.6 * 617.4 *

Random 15 16.6 * 1770.4 961.3 534.5

Random 25 22.4 * 1697.0 * 877.9 443.0

Random 35 31.8 * 1651.0 * 860.7 * 452.8

Table 3: Real vs. Random Advice - 30 SMR Constrained Scenario

Again we see that the agent is able to match the performance of random rerouting with many fewer

changes to the schedule. The fact that Queue Length for the agent is di�erent only from the Random 5

condition and that Cargo Transit for the agent is di�erent only from the highest and lowest levels of random

advice points to a result of constraining the scenario: the performance of random advice in any one condition

is highly variable. The variance associated with Cargo Transit for random advice was on average 3.5 times

higher than for agent advice. Likewise, the variance associated with Idle Cargo was 4.1 times higher and the

variance associated with Queue Length was 3.2 times higher. The agent is able to achieve good average case

performance with much higher consistency when compared to random rerouting by making a few appropriate

rerouting decisions.

2A Sche�e' test is a t-test for multiple pairwise comparisons that preserves a speci�ed experimentwise error.
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4 Bringing Humans into the Loop

Part of the motivation for plan steering is the belief that humans �nd it extremely di�cult to perform tasks

such as the one for which our agent was designed. Tracking hundreds of events over time and understanding

primary and secondary e�ects of schedule modi�cations is not something that people do well. Therefore,

we ran a series of experiments in which humans were asked to perform the same task at which the agent

was previously evaluated. We provided a set of graphical displays that gave the human user essentially

the same information and rerouting capabilities available to the agent. In one half of the trials the human

worked alone, and in the other half the human and the agent worked together. This experiment design and

experimental results are presented below [6].

4.1 Experiment Design

The schedule maintenance agent was designed to increase throughput in TransSim simulations while min-

imizing schedule disruptions. The goal of this set of experiments is to determine how both an unassisted

human and a human working in concert with the agent perform at that task. In each case the human has

quick access to roughly the same information and schedule modi�cation capabilities available to the agent.

The transportation network is displayed as a connected graph with ship icons moving along the arcs as they

traverse simulated channels. The pathology demon's predictions are displayed as a moving graph of queue

length vs. simulated day. A sliding window shows both current history of actual queue lengths and predicted

queue lengths for several days into the future. One predicted queue length window is on screen for each port

during the simulation. Taken together with the network display window, the human user has a simple but

informative visualization of the information used by the demon and the agent. A snapshot of the TransSim

user interface is shown below in Figure 2.

Figure 2: TransSim User Interface

Just as the agent makes schedule changes by rerouting cargo, so does the human. An inbound cargo
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window for each port lists the pieces of cargo that are bound for the port but have not yet been loaded into

ships and placed in a channel. Cargo routes may be highlighted and modi�ed by simply clicking on a new

destination port.

By monitoring the demon's predictions for each port, it is possible to judge the e�ects of sending additional

cargo. If the predicted queue length at a port is low or is trending downward, then it might be a good idea

to let cargo continue to be dispatched to that port. If the predicted queue length at a port is high or is

trending upward, then it might be a good idea to reroute cargo around the port to a less congested area.

The bene�t of rerouting is that the cargo in question will not waste time sitting in a long docking queue and

the queue at the bottlenecked port will be given time to clear itself out. It is important to remember that

the demon's predictions include some error. A predicted bottleneck may never materialize and the rerouting

action may have been wasted.

In one half of the trials the human works alone. In the other half the human has the aid of the schedule

steering agent. We call these the unassisted and assisted conditions respectively. In the assisted condition

the agent evaluates the state of the network and generates advice for the user. Advice identi�es both a

port that is thought to be a potential bottleneck and a piece of cargo bound for that port, and suggests an

alternative route. The human evaluates the agent's advice via the various displays described earlier and may

decide to accept or reject the advice. In either case the human may implement a rerouting decision of their

own construction.

Each of the four participants in the experiment ran ten simulations. The �rst two simulations were

training trials to get the user familiar with the task and the available tools. One training trial was assisted

and the other unassisted with the order chosen randomly. Next, two groups of 4 trials were presented where

all trials in a group were either assisted or unassisted. Again, that ordering was randomized to counterbalance

for possible order e�ects. A total of six di�erent scenarios were used: the �rst two were always used for

training and the remaining four were presented in both the assisted and unassisted conditions. The order of

presentation of the scenarios within a grouping was also randomized.

4.2 Overall Performance

Several measures of cost were recorded for each simulation (see Section 3.2). One-way ANOVA showed a

signi�cant main e�ect of scenario on all of the cost measures. Variance in the structure of the schedules for

each of the four scenarios resulted in di�ering pathology intensities and was ultimately reected in simulation

costs. Therefore, to determine if the presence of agent advice impacted simulation score, we performed two

way ANOVA of each cost measure on trial type (assisted or unassisted) and the scenario number. This

controlled for variance due to the scenario. There was a signi�cant main e�ect of trial type on four of the

costs: docking queue length, the amount of time that cargo spends sitting idle, the total amount of time

that cargo spends in transit, and the number of schedule modi�cations. All other cost measures were lower

in the assisted condition than in the unassisted condition, though they were not signi�cant.

To determine whether agent assistance helped or hurt performance, we used D-tests to compare cost

measure means in those conditions.3 In addition, we let the agent run unhindered on each of the four

scenarios, taking its own advice, to see how well it performed. Both assisted and unassisted scores were then

compared to means obtained by the agent. The results are presented in the tables below. It is clear from

Table 4 that humans working with the help of the agent are able to obtain better throughput than humans

working alone. All cost means are lower in the assisted condition although Cargo Transit is not signi�cantly

so. Not only does agent assistance result in reduced docking queues and reduced idle time for cargo, but it

reduces the amount of time that it takes cargo to travel to its �nal destination (lower Cargo Transit). This

improved performance comes at the expense of disrupting the scenario to a greater extent: on average, about

6 reroutes without assistance, compared to about 12 reroutes with assistance. Since performance is better

in the assisted condition, it is not the case that the agent's advice makes things worse and therefore more

intervention is required. Apparently, the agent is bringing pathological states to the attention of the human

user that they would otherwise have missed and that the human believes require attention. The agent is

serving its intended purpose of helping the human track large numbers of events as they occur in a complex

environment.

3A D-test is a randomization two sample t-test that is robust against deviations from parametric assumptions.
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Cost Assisted Unassisted p Value

Queue Length 742.38 828.19 0.0560

Idle Cargo 1366.56 1497.75 0.0240

Cargo Transit 2750.63 2849.44 0.1420

Reroutes 12.0 6.25 0.0010

Table 4: Comparison of Costs in Assisted vs. Unassisted Trials

How does the human's performance in either condition compare to the agent's? We see in Table 5 that

the unassisted human performs signi�cantly worse than the agent in all categories. However, the agent

implements almost three times as many changes to the scenario. Neither seems to be striking a good balance

between maximizing throughput and minimizing schedule disruption. The results in Table 6 tell a di�erent

story. The performance of the assisted human is indistinguishable from the agent's performance; none of

the cost measures are signi�cantly di�erent. This result alone is interesting since the agent performs quite

well. The di�erence is that the assisted human is able to achieve this feat with signi�cantly fewer changes to

the scenario: 12 reroutes for the assisted human compared to more than 18 for the agent. Apparently our

mixed-initiative approach to schedule maintenance is working. As noted before, the agent is probably agging

potential pathologies that the human would have otherwise missed and suggesting schedule modi�cations.

However, the human is selectively �ltering the suggestions to implement only those that seem most crucial

and that are not wasteful.

Cost Unassisted Agent p Value

Queue Length 828.19 682.88 0.0020

Idle Cargo 1497.75 1272.88 0.0010

Cargo Transit 2849.44 2649.56 0.0150

Reroutes 6.25 18.63 0.0000

Table 5: Comparison of Costs in Unassisted Trials vs. Agent

Cost Assisted Agent p Value

Queue Length 742.38 682.88 0.2220

Idle Cargo 1366.56 1272.88 0.1650

Cargo Transit 2750.63 2649.56 0.2050

Reroutes 12.0 18.63 0.0100

Table 6: Comparison of Costs in Assisted Trials vs. Agent

4.3 Evaluating User Decision Points

During an assisted trial, the user is constantly evaluating the state of the network and deciding whether or

not to act. We focus on three speci�c action decisions to determine why the assisted human's performance

is so good. They are: the agent o�ers advice and it is accepted, the agent o�ers advice and it is rejected,

the human makes a rerouting decision independent of the agent. The problem is one of credit assignment.

Is good performance due to the intelligence of the agent? Is it due to the human's ability to di�erentiate

between good and bad advice? Or is it due to the human's ability to formulate schedule modi�cations

independently?

The metric we have chosen for this credit assignment task is daily queue length summed over all ports.

Every time during the course of a single simulation that the human makes one of the three decisions, we look

at total queue length over a window of �xed size in the future to determine if the decision was good or bad.
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This is complicated by that fact that there is a heavy trend in queue length. As more and more cargo enters

the network, queue lengths grow slowly but steadily to somewhere near the midpoint of the scenario. As

cargo leaves the network for �nal destinations, queue lengths fall o� until the scenario ends. The impact of

a single user action is easily swamped by the e�ect of trend. To combat that e�ect we generated a baseline

queue length curve for each of the four scenarios to serve as a standard for expected queue length. That

baseline was created by averaging the queue lengths measured for each day over all four of the participants'

assisted trials in a scenario and then performing a 3-mean smooth [11]. To score a decision point on a given

day in an individual trial, we simply look at future queue lengths in that trial and compare them to future

queue lengths in the same time range in the appropriate baseline curve. Subtracting baseline scores from

actual scores eliminates trend and gives some idea of performance relative to expected values.

Action Mean Di�erence p Value

Accept Advice -0.32 0.1790

Reject Advice 0.583 0.0190

User Modi�cation -1.02 0.0070

Table 7: Decisions Points in Scenario 3

The results for scenario 3 are shown in Table 7. For each action type we computed actual queue length

minus expected queue length and compared the mean of those numbers to a mean of zero. In that way we

can determine how the actions a�ect performance over the course of a single simulation when compared to

expectation. Accepting the agent's advice results in smaller than expected queue lengths, but the result

is not signi�cant. Rejecting the agent's advice led to signi�cantly larger than expected queues. It appears

that in this scenario, the agent's advice tends to stave o� potential pathologies and ignoring its advice

is detrimental. In terms of making bene�cial schedule modi�cations, the human fares quite well. When

compared to expectations, the results of the human's rerouting decisions are signi�cantly better. With the

tools that we provided, the human was able to evaluate the state of the transportation network, identify

potential trouble spots, and formulate a preventative plan. Therefore, poor human performance in the

unassisted trials was not due to an inability to understand and manipulate the domain.

5 Conclusions and Future Work

We have seen that an intelligent agent may be constructed that takes advantage of minimal domain knowledge

and that uses simple heuristics to manage a complex problem domain. Such an agent was constructed

for schedule maintenance in a simulated transportation network and its performance was evaluated. The

presence of the agent signi�cantly reduced cost measures when compared to doing nothing. In addition,

the bene�t of the agent grew with problem size and complexity. A default rule for managing the domain

with random rerouting was explored and shown to have substantial utility in reducing cost. Unfortunately,

random rerouting tended to destroy the structure of the scenarios. At a given level of simulation cost, the

agent used fewer rerouting actions than the default rule. As problem size and complexity grew this di�erence

became more pronounced.

Simultaneously achieving the two goals of maximizing throughput and minimizing the number of changes

to the initial schedule proved to be di�cult for both the human and the agent. The human rerouted few pieces

of cargo at the expense of high simulation costs. Experimental results indicate that the humans' individual

decisions resulted in signi�cantly better than expected performance. Therefore, poor overall performance

by human subjects is not due to their inability to understand the domain. The agent's simulation costs

were quite low but the number of cargo rerouting decisions was high. The optimal balance was struck by

the agent and the human working together. The agent enhanced the human's ability to identify potential

pathologies in a complicated environment, and the human evaluated and �ltered away schedule modi�cations

with dubious utility that were suggested by the agent.

The goal of this research is to arrive at a generalizable architecture for plan steering that scales up to

the demands of large, complex planning problems. We want to be able to replace TransSim with the real

world and have agents working with humans to avoid pathologies in plans and schedules. To that end, we

9



will continue to push on this system by investigating pathologies other than bottlenecks, advice other than

rerouting, and methods for increasing predictive accuracy. We want to develop explanatory theories for why

our rerouting heuristic works so well in this domain and for why bringing humans into the loop has such a

dramatic impact on performance. We then hope to study other problem domains to understand how they

are di�erent from transportation planning and how those di�erences impact the e�cacy of our architecture.
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