
Toward a Plan Steering

Agent: Experiments with

Schedule Maintenance

Tim Oates and Paul R. Cohen

Computer Science Technical Report 94-02

Experimental Knowledge Systems Laboratory

Department of Computer Science

University of Massachusetts Amherst, MA 01003

Abstract

When a plan involves hundreds or thousands of events over time

it can be di�cult or impossible to tell whether those events are un-

folding \according to plan" and to assess the impact of dynamic plan

modi�cations. Pathological states may arise in which goals cannot be

attained or are attained too slowly. Plan steering is an agent-based

approach to this problem. The agent monitors an unfolding plan, de-

tects and predicts pathological situations, and develops dynamic plan

modi�cations that will steer the plan around the problem. We present

results for such a system that performs the related task of schedule

maintenance in the transportation planning domain. The agent uses

limited domain knowledge and simple heuristics and is able to improve

throughput signi�cantly.

0This research is supported by ARPA-AFOSR contract F30602-91-C-0076.



2



1 Introduction

The world in which we operate is tremendously complex and unpredictable.

These two factors conspire to make management of a wide variety of do-

mains di�cult for humans. Thus, plans formulated by humans to achieve

goals in the real world will often fail. When they do, they may be repaired by

humans manually, by computer programs automatically, or by both work-

ing in concert. The bene�ts of keeping both humans and computers in the

loop are obvious: each has a relatively disjoint set of talents that augment

the other's. Arti�cial intelligence technology currently exists to repair plans

automatically and to recover from plan failures automatically. Some tech-

nology exists to automate prediction and avoidance of failures while plans

execute. [3]

Plan steering addresses the problem of predicting and avoiding, in real

time, pathological states that make it di�cult or impossible to achieve goals.

That is accomplished with an autonomous plan steering agent that assists

humans in monitoring a plan as it unfolds, detecting and predicting patho-

logical situations and suggesting bene�cial plan modi�cations in real time.

The agent helps the human to steer the plan out of or around trouble. To

explore issues related to plan steering we have constructed a system for

the related task of schedule maintenance. We are not in this paper testing

any speci�c hypothesis about plan steering, but are instead attempting to

develop a baseline system for schedule maintenance. We want to develop

an appropriate architecture and determine which features of the task and

environment a�ect the e�cacy of the system.

Section 2 of the paper introduces the schedule maintenance agent, pre-

senting its task and architecture. Section 3 outlines the results of several

experiments that analyze the performance of various components of the

agent as well as performance of the agent as a whole at its intended task.

Analysis of the agent includes exploration of several factors that may a�ect

its performance and comparison to a very simple but e�ective default rule

for managing the domain. Section 4 presents conclusions and directions for

future work.

2 An Agent for Schedule Maintenance

We have constructed an agent to perform schedule maintenance in the trans-

portation planning domain. Its goal is to move cargo quickly through a



network starting with an initial schedule. This task is more di�cult than

simple load balancing due to the structure imposed by the initial schedule;

we want to maintain as much of that structure as possible.

2.1 The Schedule Maintenance Task

Our agent manages a transportation simulation called TransSim. A TransSim

scenario consists of a collection of ports, ships, cargo, and routes. The routes,

called \simple movement requirements" or SMRs, specify when each piece

of cargo is to begin its journey and through which ports it is to travel. For

example:

Cargo-12 should set sail from port-1 on day 10. From there

it should stop at port-5 and port-3 before sailing for its �nal

destination, port-20.

Ports and ships are limited resources. There may not be a ship available on

day 10 at port-1. There may be a ship available, but the port may be clogged

and the ship can't dock until day 15. Constraints govern which kinds of cargo

can go on di�erent kinds of ships. The simulation is nondeterministic in that

ship travel time may vary.

SMRs are fully speci�ed at the start of each scenario. The speci�c ship

on which a piece of cargo will travel is determined at run time, based on

availability. There may be a free ship locally or one may be requested from

a nearby port. Therefore, the behavior observed during a simulation is

largely determined by the scenario's SMRs. If many SMRs travel through

one port, that port is likely to become clogged. If SMR destinations are

evenly distributed in time over all ports then problems are unlikely to arise.

The key point is that there is really no plan in this domain. Cargo must

travel speci�c routes starting at certain times, but how that happens is

determined dynamically at run time. This is why we characterize the task

as schedule maintenance, and why our agent is but a �rst stab at the more

general plan steering problem.

2.2 System Architecture

The architecture of a generic plan steering system is shown in Figure 1. The

architecture for schedule maintenance is identical, only the task changes.

A pathology demon monitors the environment as a plan unfolds, detecting

and predicting pathological situations. The plan steering agent monitors the

4



demon's output and formulates plan modi�cations that address the problems

found by the demon. A human user evaluates the agent's advice and e�ects

plan changes when appropriate.

Plan Execution Environment

Plan Steering Agent

Pathology Demon

Human User Dynamic Plan
Modifications

Figure 1: Plan Steering Architecture

A pathology demon has been implemented to monitor TransSim as cargo

is shipped about. It predicts when and where in the network a bottleneck

is likely to arise. Bottlenecks result when too many ships attempt to travel

through a port, causing reduced throughput. The demon uses simple domain

information to make its predictions. It looks at the current state of each

port and ships that are traveling in channels toward the port and assigns a

probability to each possible state of the port on each day out to a horizon.

That is, the demon only uses information local to a given port. Resource-

based schedule revision with local information was used successfully in [4].

The schedule maintenance agent combines the demon's predictions for

multiple days in the future to determine which ports are likely to become

substantial problems. The agent then uses simple heuristics to generate

advice that, when implemented, will either alleviate or avoid the predicted

bottleneck. This may be contrasted with reactive approaches, such as [2],

that respond to unexpected events at the time that they occur. Currently,

the only advice the agent o�ers is based on a simple rerouting heuristic.

If a piece of cargo is being loaded onto a ship bound for a potential bot-

tleneck, the agent changes the cargo's SMR so that it travels to the port

closest to the original destination that is not problematic. This seems to

be a reasonable approach in that rerouted cargo continues to make progress

toward its destination. We assume that ports that are close geographically

are \equivalent" in some sense.

5



3 Performance Assessment

We now focus on assessing the ability of our system to manage the TransSim

domain. First, we will investigate performance of the pathology demon as

inuenced by environmental factors. Then, we will determine whether the

agent's advice is helpful, harmful, or neither. We will also explore how

much of the bene�t is due to the intelligence built into the agent and how

much is due to other factors. Finally, we want to ascertain to what extent

environmental factors, such as pathology severity and problem complexity,

a�ect the agent's performance. The general procedure is to run several

simulations in each of a variety of experimental conditions, taking several

dependent cost measures which are then compared to determine the e�ect

of the condition.

3.1 Pathology Demon

The pathology prediction demon models each ship as a probability distri-

bution of arrival times. Combining this distribution with the current state

of each port, the demon arrives at a predicted docking queue length. The

model is similar to that used in [1] for exploring the e�ects of resource allo-

cation decisions. Long docking queues indicate the presence of a bottleneck.

Several factors a�ect the accuracy of the demon's predictions. They are (1)

the distance into the future for which predictions are made, (2) the certainty

of the demon's knowledge about ship arrivals, and (3) a prediction threshold

that controls how aggressive the demon is at making predictions (low values

are aggressive, high values are conservative). We expect predictions to be

less accurate when made far into the future or when there is a lot of variance

in ship arrivals. There should be an optimal prediction threshold, at least

for a given level of the other two factors.

The accuracy of the demon was explored by running a fully factorial ex-

periment with 10 simulations for each of three levels of the factors (a total of

270 trials). The demon's predictions for each port as well as the actual state

of each port were recorded and average squared prediction error was calcu-

lated for each trial. For predictions 2, 4, and 6 days into the future, average

squared error was 0.137, 0.244, and 0.214; increasing but not monotonically.

Though the e�ect of variance in the demon's knowledge about ship arrivals

was not a signi�cant main e�ect, it did interact signi�cantly with prediction

distance. High variance had an increasingly adverse e�ect on error as pre-

diction distance was increased. Finally, plotting error at several prediction

6



threshold values resulted in a bowl shaped curve with 0.2 being the optimal

threshold.

3.2 Measures of Cost

Having established some inuences of demon accuracy, we turned next to

the schedule maintenance agent and its performance. We de�ned several

measures of cost associated with a single run of TransSim. These were used

to evaluate the e�ect of moving from one experimental condition to another.

Bottleneck Predictions The sum over all days of the number of ports

marked as potential trouble spots by the demon for a given day.

Cargo transit The sum over all pieces of cargo of the number of days from

when the item �rst came on line until it reached its �nal destination.

Idle Cargo Cargo is considered idle if it is ready to be loaded onto a ship

but none is available or if it is sitting in a ship queued for docking.

This measure is the sum over all days of the number of pieces of idle

cargo.

Queue Length Each port has a limited number of docks. Ships waiting to

dock are placed in the docking queue. This measure is the sum over

all days and all ports of the number of ships queued for docking.

Simulated days The number of simulated days required to ship all cargo

to its �nal destination.

Ship utility Ships may travel empty when called from one port to another

to service a piece of cargo. This measure is the sum over all simulated

days of the number of ships traveling empty on a given day.

When the agent is not o�ering advice, we expect a positive correlation be-

tween Bottleneck Predictions and many of the other measures such as Queue

Length. If the demon is predicting many bottlenecks, and the agent is not

doing anything to avoid them, then if the demon is accurate our other cost

measures will rise accordingly. The agent was designed to predict and avoid

large docking queues so we expect its actions to reduce Queue Length. One

extreme way to reduce Queue Length is to let there be only one ship trav-

eling at any time. Both Cargo Transit and Simulated Days provide another

view into the agent's performance on a global scale so we may ensure that

it is not adopting a similarly pathological strategy.

7



3.3 Agent Advice vs No Advice

Several experiments were run to evaluate the agent's performance. They

typically consisted of two conditions. In the �rst condition the agent moni-

tors a running simulation but o�ers no advice. In the second condition the

agent monitors a running simulation and implements any advice that it may

have. The goal in each of these experiments is to determine how the agent's

performance compares to doing nothing. We assess the impact of the agent's

actions by performing an analysis of variance (ANOVA) of each cost mea-

sure on whether or not agent advice is used. If the result is signi�cant then

the actions of the agent a�ect the cost measure and inspection of cell means

will indicate if it is a bene�cial e�ect. A total of 10 trials (simulations) were

run in each condition. Also, we allowed any type cargo to be carried by any

type of ship. Experiments with more constraints are described in Section

3.5.

By varying the number of SMRs for a simulation we have some crude

control over the frequency and duration of bottlenecks. Few SMRs results

in low tra�c intensity and few bottlenecks. Many SMRs has the opposite

e�ect. Therefore, we ran an advice vs. no advice experiments at each of

three levels of the number of SMRs in the scenario. The results for all three

experiments are shown below.

Cost p Value No Advice Mean Advice Mean % Reduction

BP 0.0172 119.9 104.8 12.6

CT 0.0 1512.8 1365.2 9.8

IC 0.0 747.7 594.4 20.5

QL 0.0 581.7 433.3 25.5

SD 0.0333 125.1 116.8 6.6

SU 0.4820 47.7 56.6 -18.7

Table 1: E�ects of Agent Advice - 25 SMRs

There are several interesting items in these tables. First, increasing the

number of SMRs did in fact increase the number or severity of bottlenecks.

This may be seen by noting that the mean queue length (an objective mea-

sure of bottleneck severity) in the \no advice" condition is positively cor-

related with the number of SMRs in the scenario. Next, the agent was

bene�cial regardless of pathology intensity. In fact, the percent reduction

8



Cost p Value No Advice Mean Advice Mean % Reduction

BP 0.0 216.4 175.8 18.8

CT 0.0 2170.5 1998.8 7.8

IC 0.0 1112.3 942.6 15.3

QL 0.0 793.9 640.6 19.3

SD 0.6961 135.9 134.5 1.0

SU 0.6535 126.9 130.9 -3.2

Table 2: E�ects of Agent Advice - 30 SMRs

Cost p Value No Advice Mean Advice Mean % Reduction

BP 0.0 232 169.9 26.8

CT 0.0 2659.9 2261.8 15.0

IC 0.0 1542.9 1208.2 21.7

QL 0.0 911.1 598.5 34.3

SD 0.0325 168.2 149 11.4

SU 0.018 181.1 216.1 -19.3

Table 3: E�ects of Agent Advice - 35 SMRs

in all cost measures was largest in the most pathological 35 SMR case. The

agent achieved its design goal of reducing queue length. In doing so, it re-

duced the amount of time cargo spends sitting idle and actually increased

the speed with which cargo travels to its destination locally (decreased Cargo

Transit) and globally (decreased Simulated Days).

To investigate the e�ects of increasing the complexity of the task on

the agent's ability to perform, a similar experiment was run with a larger

scenario. The number of ports and ships were doubled (to 10 and 40 re-

spectively) and the number of SMRs was set at 60. Again, 10 trials per

condition were run. We obtain signi�cant reductions in all cost measures

except Ship Utility. Comparing percentage reductions with all three of the

previous tables we see that increasing the complexity of the task increases

the extent to which the agent is able to help.

The obvious conclusion is that in a wide variety of conditions, the agent

is able to reduce the costs associated with a simulation. Neither pathology

9



Cost p Value No Advice Mean Advice Mean % Reduction

BP 0.0 283.5 204.6 27.8

CT 0.0 4284.6 3523.7 17.7

IC 0.0 2222.8 1577.6 29.0

QL 0.0 1406.7 817.4 41.9

SD 0.0 189.2 157.5 16.8

SU 0.5178 320.35 330.6 -3.2

Table 4: E�ects of Agent Advice - Large Scenario

intensity nor problem complexity seem to nullify its ability to perform. In

fact, the agent shines most brightly in precisely those situations where it is

needed most, highly pathological and large/complex scenarios.

3.4 Control Condition - Random Advice

An experiment was run to determine the e�ects of demon accuracy on agent

performance. The factors that a�ect demon accuracy (see Section 3.1) were

varied with the surprising result that there was no signi�cant impact on

the e�cacy of the agent. If the agent performs equally well with good and

bad predictions of bottlenecks, then perhaps its ability to reduce costs is

due to shu�ing of routes, not to its ability to predict. Random rerouting,

periodically picking a piece of cargo and sending it on a newly chosen random

route, may be as good as the agent. Random rerouting has the advantage of

tending to evenly distribute cargo over the network, minimizing contention

for any one port. The disadvantage is that it destroys the structure inherent

in the initial schedule.

To investigate the utility of random advice, we ran an experiment in

which the agent, with varying frequency, rerouted a randomly selected piece

of cargo. This was done with no regard for bottleneck predictions. We varied

the probability of performing a reroute on each day over four values: 5%,

15%, 25%, 35%. As with the advice vs. no advice experiments, the number

of SMRs in the simulation was varied to get a feel for how these e�ects

changed with pathology intensity. ANOVA was used to identify signi�cant

e�ects. The tables below show the mean number of reroutes performed

at each level of advice. In addition, the means of the cost measures that

showed a signi�cant main e�ect of the level of random advice are given.

10



When a Sche�e' test1 determines that one of the means at a random level is

signi�cantly di�erent from the mean at the agent advice level, an '*' is used

to mark the mean at the random level.

Level Reroutes CT IC QL

Real Advice 7.5 1365.2 594.4 433.3

Random 5 4 1466.87 669.12 493.12

Random 15 9.125 1290.87 578.75 430.5

Random 25 15.25 * 1203.5 * 503.62 372

Random 35 18 * 1191.37 * 504.12 375

Table 5: Real vs. Random Advice - 25 SMRs

Level Reroutes CT IC QL

Real Advice 12 1998.8 942.6 640.6

Random 5 5.7 * 2080 1040 * 726.8 *

Random 15 13.8 2038 1050.8 * 771.1 *

Random 25 20.1 * 1950.8 956.6 688.5

Random 35 27.5 * 1855.1 * 879.5 638.3

Table 6: Real vs. Random Advice - 30 SMRs

Level Reroutes CT IC QL

Real Advice 21.3 2261.8 1208.2 598.5

Random 5 7.4 * 2449.2 * 1385.6 * 764.9 *

Random 15 17.5 2292 1229.3 647.3

Random 25 27.5 * 2099.1 * 1084.6 571.8

Random 35 37.1 * 2141.5 1119.6 590.5

Table 7: Real vs. Random Advice - 35 SMRs

As expected, cost measures decrease with increasing frequency of random

1A Sche�e' test is a t-test for multiple pairwise comparisons that preserves a speci�ed

experimentwise error.

11



rerouting. For the 25 SMR case the decrease tends to atten out with the

two highest levels of randomness being nearly equivalent. For the 30 SMR

case the decrease continued monotonically whereas for the 35 SMR case the

cost measures actually spiked back up at the highest level of randomness. It

appears that for highly pathological scenarios, there is a limit beyond which

random shu�ing hurts more than it helps.

It is apparent that in the 25 SMR case any amount of randomness is

indistinguishable from the agent's advice when performance is measured in

terms of Idle Cargo and Queue Length, and virtually identical when mea-

sured by Cargo Transit. The situation is somewhat better in the 30 SMR

case. With an average of 12 reroutes, the agent is able to equal the perfor-

mance of randomly rerouting 20 times in the Idle Cargo and Queue Length

columns. (Note that a Sche�e' test indicates that the amount of real ad-

vice given is signi�cantly lower than the amount given in the random 25

case.) This is an important point. Remember that there is no \plan" is this

domain, only the structure imposed by the initial SMRs. Improving perfor-

mance with the minimal number of rerouting decisions is key to maintaining

that structure. The results in the 35 SMR case are somewhat inconclusive.

The agent performed better than the random 5 level but only matched per-

formance of the other random levels. The two highest levels of randomness (

which had signi�cantly higher mean numbers of reroutes) were statistically

equivalent to the agent in terms of simulation costs. Again we see that the

demon is able to achieve good results with a few well directed rerouting

decisions rather than with large numbers of random ones.

The same large scenario described previously was used to investigate the

e�ects of problem size and complexity on the e�cacy of random advice. The

results here are striking. Increasing the amount of random advice seems to

help monotonically. The amount of rerouting performed by the agent was

statistically equivalent to the random 25 condition only. In that condition,

Sche�e' tests show that the agent's performance is signi�cantly better than

random advice; its domain knowledge is paying great rewards. Looking at

the data another way, the agent performed equally as well as the random 35

condition with 34% fewer reroutes.

Our initial proposition that random rerouting would help to lower the

various cost measures was borne out. In fact, it seems that more random

rerouting is better than less, except perhaps in highly bottlenecked scenar-

ios. There existed some level of randomness that equaled the performance of

the agent for each of the previous experiments. However, the agent typically

rerouted many fewer pieces of cargo than the equivalent level of randomness,

12



Level Reroutes CT IC QL

Real Advice 28.25 3543.35 1606.05 826.85

Random 5 8.2 * 4057.05 * 2028.8 * 1224.3 *

Random 15 19.15 * 3851.6 * 1884.5 * 1134.7 *

Random 25 29.2 3696 * 1753.8 * 1042.3 *

Random 35 42.85 * 3454.85 1523.6 852.15

Table 8: Real vs. Random Advice - Large Scenario

thereby preserving more of the structure of the simulation. Finally, it ap-

pears that for large/complex scenarios the di�erence between randomness

and the agent is more pronounced.

3.5 Highly Constrained Scenarios

To increase the realism of the agent's task, several constraints were added to

the scenarios. There are three types of cargo: CONT, GENL, and RORO.

Rather than using a single cargo type, we used multiple types and limited

the cargo handling capabilities of both ships and docks. Now for cargo to

ow through the network, it must match in type with any ship that is to

carry it and any dock where it will be handled. We ran agent advice vs.

random advice experiments under these conditions after modifying the agent

to consider the additional constraints. Whenever random advice generated

an incompatible routing assignment, it was penalized with a short delay for

the o�ending piece of cargo. The results are presented below.

Level Reroutes CT IC QL

Real Advice 9.6 1833.0 990.9 488.5

Random 5 4.6 * 2010.2 * 1135.6 * 617.4 *

Random 15 16.6 * 1770.4 961.3 534.5

Random 25 22.4 * 1697.0 * 877.9 443.0

Random 35 31.8 * 1651.0 * 860.7 * 452.8

Table 9: Real vs. Random Advice - 30 SMR Constrained Scenario

Again we see that the agent is able to match the performance of random

13



rerouting with many fewer changes to the schedule. The fact that Queue

Length for the agent is di�erent only from the Random 5 condition and that

Cargo Transit for the agent is di�erent only from the highest and lowest

levels of random advice points to a result of constraining the scenario: the

performance of random advice in any one condition is highly variable. The

variance associated with Cargo Transit for random advice was on average 3.5

times higher than for agent advice. Likewise, the variance associated with

Idle Cargo was 4.1 times higher and the variance associated with Queue

Length was 3.2 times higher. The agent is able to achieve good average

case performance with much higher consistency when compared to random

rerouting by making a few appropriate rerouting decisions.

4 Conclusions and Future Work

We have seen that an intelligent agent may be constructed that takes ad-

vantage of minimal domain knowledge and that uses simple heuristics to

manage a complex problem domain. Such an agent was constructed for

schedule maintenance in a simulated transportation network and its perfor-

mance was evaluated. The presence of the agent signi�cantly reduced cost

measures when compared to doing nothing. In addition, the bene�t of the

agent grew with problem size and complexity. A default rule for managing

the domain with random rerouting was explored and shown to have sub-

stantial utility in reducing cost. Unfortunately, random rerouting tended to

destroy the structure of the scenarios. At a given level of simulation cost,

the agent used fewer rerouting actions than the default rule. As problem

size and complexity grew this di�erence became more pronounced.

In the near term we want to improve the utility of the agent by investi-

gating pathologies other than bottlenecks, advice other than rerouting, and

non-local e�ects for pathology prediction. The next step with the system as

a whole is to run experiments with human users in the loop. Can a human

acting with the help of the agent manage TransSim better than either the

human or the agent acting alone? We hope to arrive at a generalizable plan

steering architecture that will allow us to replace TransSim with the real

world and to achieve similar results.

14



Acknowledgements

This research is supported by ARPA under contract F30602-91-C-0076. The

US Government is authorized to reproduce and distribute reprints for gov-

ernmental purposes notwithstanding any copright notation hereon.

References

[1] N. Muscetolla and S.F. Smith, \A Probabilistic Framework for

Resource-Constrained Multi-Agent Planning", in Proceedings of the

Tenth International Joint Conference on Arti�cial Intelligence, pp.

1063-1066, Morgan Kaufmann, 1987.

[2] P.S. Ow, S.F. Smith, and A. Thiriez, \Reactive Plan Revision", in Pro-

ceedings of the Seventh National Conference on Arti�cial Intelligence,

pp. 77-82, Morgan Kaufmann, 1988.

[3] N. Sadeh, \Micro-Opportunistic Scheduling: The Micro-Boss Factory

Scheduler", to appear in Intelligent Scheduling, edited by M. Zweben

and M. Fox, Morgan Kaufmann, 1993.

[4] S.F. Smith, P.S. Ow, N. Muscetolla, J. Potvin, and D.C. Matthys, \An

Integrated Framework for Generating and Revising Factory Schedules",

Journal of the Operational Research Society, Vol. 41. No. 6, 1990.

15


