
Automating Path Analysis for Building
Causal Models from Data*

Paul R. Cohen, Adam Carlson,
Lisa Ballesteros, Robert St. Amant

Computer Science Technical Report 93-38

Experimental Knowledge Systems Laboratory
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

Abstract

Path analysis is a generalization of multiple linear regression that builds models with causal
interpretations. It is an exploratory or discovery procedure for finding causal structure in
correlational data. Recently, we have applied statistical methods such as path analysis to the
problem of building models of AI programs, which are generally complex and poorly understood.
For example, we built by hand a path-analytic causal model of the behavior of the Phoenix planner.
Path analysis has a huge search space, however. If one measures N parameters of a system, then
one can build O(2N2) causal models relating these parameters. For this reason, we have developed
an algorithm that heuristically searches the space of causal models. This paper describes path
analysis and the algorithm, and presents preliminary empirical results, including what we believe is
the first example of a causal model of an AI system induced from performance data by another AI
system.

* This research was supported by DARPA-AFOSR contract F30602-91-C-0076.

Automating Path Analysis. Cohen et al.

1

1. INTRODUCTION
Because machine learning techniques search for structure
in data, they often closely parallel statistical techniques
for exploratory data analysis, such as clustering, factor
analysis and regression. This paper describes a statistical
discovery procedure for finding causal structure in corre-
lational data, called path analysis [Asher, 83; Li, 75] and
an algorithm that builds path-analytic models automati-
cally, given data. This work has the same goals as re-
search in function finding and other discovery techniques,
that is, to find rules, laws, and mechanisms that underlie
nonexperimental data [Falkenhainer & Michalski 86;
Langley et al., 87; Schaffer, 90; Zytkow et al., 90].1

Whereas function finding algorithms produce functional
abstractions of (presumably) causal mechanisms, our al-
gorithm produces explicitly causal models. Our work is
most similar to that of Glymour et al. [87], who built the
TETRAD system around the analysis of structural equa-
tions—essentially path analysis. Pearl [91; 93] and
Spirtes [93] have recently developed a causal induction
algorithm with a more general mathematical basis than
path analysis; it relies on evidence of nonindependence, a
weaker criterion than path analysis, which relies on evi-
dence of correlation.

We developed the algorithm to help us discover causal
explanations of how a complex AI planning system
works. The system, called Phoenix [Cohen et al., 89],
simulates forest fires and the activities of agents such as
bulldozers and helicopters. One agent, called the fireboss,
plans how the others, which are semi-autonomous, should
fight the fire; but things inevitably go wrong, winds shift,
plans fail, bulldozers run out of gas, and the fireboss soon
has a crisis on its hands. At first, this chaos was appealing
and we congratulated ourselves for building such a realis-
tic environment. However, we soon realized that we
could explain very little about the behavior of the fireboss.
We turned to regression analysis to answer some ques-
tions, such as, "Which has more impact on the time to
contain a fire: the wind speed or the number of times the
fireboss must replan?" But although regression assumed
these factors interacted, it provided no explanation of their
causal relationship. For example, we knew that the wind
speed could affect the incidence of replanning and not
vice versa, but this causal, explanatory knowledge was not
to be found in regression models. Nor would automated
regression procedures (e.g., stepwise multiple regression)
find causal models of our planner. Path analysis, how-
ever, is a generalization of regression analysis that pro-
duces explicitly causal models. We built one such model

1The term "nonexperimental" is perhaps confusing, because data are
usually collected in an experiment. Nonexperimental means that the
experiment is over and the opportunity to manipulate variables to see
effects has passed. Causal hypotheses must therefore be generated and
tested with the data, alone.

of Phoenix by hand, and by automating path analysis as
we describe below, we have been able to discover other
causal explanations of how the Phoenix fireboss works.

Readers who are familiar with regression analysis might
skip to Section 3, where we introduce path analysis, or
Section 4 where we illustrate a path analysis of Phoenix.
Section 5 describes our algorithm. Section 6 discusses
two experiments, an informal one in which we applied the
algorithm to Phoenix data, and a factorial experiment in
which the behavior of the algorithm was probed by apply-
ing it to artificial data.

2. BACKGROUND: REGRESSION
Path analysis is a generalization of multiple linear regres-
sion, so we will begin with regression. Simple linear re-
gression finds a least-squares line relating a single predic-
tor variable x to a performance variable y . A least-
squares line is one that minimizes the sum of squared de-
viations of predicted values from actual values. That is,
simple linear regression finds a line √y = bx + a that mini-
mizes (√yi − yi)2i∑ .

Multiple linear regression finds least-squares rules (i.e.,
planes and hyperplanes) for more than one predictor vari-
able, rules of the form √y = b1x1+...+bkxk + a . The inter-
pretation of such a rule is that a unit change in a predictor
variable x produces b units change in √y . Thus, the re-
gression coefficients depend on the units of measurement
of the predictor variables; for example, if x is measured
in feet then b will be a factor of 5280 larger than if x is
measured in miles. For this and other reasons, regression
models are often constructed for standardized variables.
A standardized variable is what you get by subtracting
from the variable its mean and dividing by its standard
deviation. For concreteness and simplicity, we will show
how to solve for coefficients in a standardized linear re-
gression model with three predictor variables. Here is the
prediction model: √Y = β1X1 + β2X2 + β3X3 (standardized
variables are denoted with uppercase letters). The inter-
pretation of this model is that a change in X1 of one stan-
dard deviation, s1, produces β1 standard deviations
change in √Y . Thus, beta coefficients are comparable: if
β1 =. 4, β2 =.8, then a standard deviation change in X2
has twice the influence on Y as a standard deviation
change in X1 .

Multiple linear regression finds beta coefficients to con-
struct a least-squares rule. First, multiply the prediction
model through by each of the terms on the right hand side,
producing three equations:

√YX1 = β1X1
2

+ β2X2X1 + β3X3X1
√YX2 = β1X1X2 + β2X2

2
+ β3X3X2

√YX3 = β1X1X3 + β2X2X3 + β3X3
2

then take sums:

Automating Path Analysis. Cohen et al.

2

√YX1∑ = b1 X1
2

+ ∑ b2 X2X1 + b∑ 3 X3X1∑
√YX2 = b1 X1X2 + b2 X2

2
+ b3 X3X2∑∑∑∑

√YX3 = b1 X1X3 + b2 X2X3 + b3 X3
2

∑∑∑∑

Now, because the sum of the product of two standardized
variables is their correlation (divided by N , which we can
ignore here) and the square of a standardized variable
(divided by N) is the variance, the previous equations can
be written in terms of correlations:

rYX1 = β1 + β2rX2X1 + β3rX3X1
rYX2 = β1rX2X1 + β2 + β3rX3X2

rYX3 = β1rX3X1 + β2rX3X2 + β3

(1)

Clearly, with these three equations we can solve for the
three unknown beta coefficients. We have not shown that
these coefficients guarantee that √Y = β1X1 + β2X2 + β3X3
is a least-squares rule, but the interested reader can find
this demonstration in [Li, 75] or any good statistics text.

The three equations (1) are called the normal equations,
and they have an interesting interpretation, illustrated in
Figure 1. Consider the first normal equation,
rYX1 = β1 + β2rX2X1 + β3rX3X1 . The β1 term is represented
in Figure 1 by the direct path between X1, and Y ; the
second term is represented by the indirect path from X1,
through X2 to Y ; and the third term is represented by the
indirect path through X3. Thus, the correlation rYX1 is
given by the sum of the weights of three paths in Figure 1,
where the weight of a path is the product of the coeffi-
cients (either correlations or betas) along the constituent
links of the path. The second and third normal equations
have similar interpretations in Figure 1. By convention,
curved arcs without arrows represent correlations and di-
rected arcs represent causes. The causal interpretation of
beta coefficients is plausible because betas are standard-
ized partial regression coefficients; they represent the ef-
fect of a predictor variable on Y when all the other pre-
dictor variables are fixed. You can interpret β1 as what
happens to Y when only X1 is systematically varied. In
this sense, beta coefficients provide a statistical version of
the control you get in an experiment in which X2 and X3
are fixed and X1 is varied; in such an experiment, the ef-
fect on Y is attributable to X1. (Alternatively, the effects
might be due to an unmeasured or latent variable that is
correlated with X1; we will not consider this case here.)

So far we have described how a prediction model
√Y = β1X1 + β2X2 + β3X3 gives rise to a set of normal equa-

tions, and to beta coefficients that make the prediction
model a least-squares fit to our data. We also gave a
causal interpretation of the normal equations in terms of
the path model in Figure 1. If this were all we could do,
path analysis would be identical to linear regression and
not worth the effort.

β1

β2

β3

rx1x2

rx2x3

rx1x3

X1

X2

X3

Y

Figure 1: The path model that corresponds to
the multiple linear regression of Y
on X1, X2 and X3.

3. PATH ANALYSIS
The power of path analysis is that we can specify virtually
any prediction model we like, and then solve for beta co-
efficients that ensure the model is a least-squares fit to our
data. For example, Figure 2 shows a model in which
X1and X2 directly cause Y , and X2 also indirectly influ-
ences Y through X3, and no intercorrelations between

X1

YX2

X3 ρYX3

ρYX2

ρYX1

ρX3 X2

Figure 2: A path model that does not corre-
spond to a multiple linear regres-
sion of Y on X1, X2 and X3.

X1, X2 and X3 exist. The corresponding prediction
model is √Y = ρYX1X1 + ρYX2 X2 + ρYX3X3. The arcs are
labeled with path coefficients, denoted ρ . Path analysis
tells us whether these coefficients are correlations or be-
tas, and if the latter, path analysis solves for the values
that make the prediction model a least-squares fit to the
data.

What follows is an informal description of the steps in
path analysis. See [Cohen] for a more formal discussion
of why these steps yield path coefficients that ensure that
the prediction model is a least-squares fit to the data. The
first step is to propose a prediction model and a corre-
sponding path diagram. Imagine Figure 2 is the result.
The second step is to tag each arc as a correlation or a
beta coefficient. If several variables A, B, ... all point to
another variable K (as X1, X2, X3 point to Y in Fig. 2)
then

Automating Path Analysis. Cohen et al.

3

• If A, B,... are independent causes of K , then the path
coefficients ρKA ,ρKB ,... are just the correlation co-
efficients rAK ,rBK ,... , respectively.

• If A, B,... are dependent causes of K , then ρKA ,ρKB ,...
are the standardized partial regression coefficients
βAK ,βBK ,... , respectively, obtained from the mul-
tiple regression of K on A, B, ...

By these rules, ρYX1 = rX1Y because X1 is independent of

all other causes of Y ; ρYX2 = βX2Y and ρYX3 = βX3Y be-

cause X2 and X3 are dependent causes of Y ; and
ρX3X2 = rX2X3 because X2 is independent of all other

causes of X3 .

The next step is to solve for the path coefficients.
Because ρYX1 and ρX3X2 are correlations, they are calcu-
lated directly from our data. To find the other path coeffi-
cients we first run a multiple regression of Y on X2 and
X3, or, equivalently, solve two normal equations,
rYX2 = βYX2 + βYX3rX2X3 and rYX3 = βYX2rX2X3 + βYX3 , for

βYX2 and βYX3 .

Finally we can estimate the correlations between
X1, X2, X3 and Y . This involves finding paths between
the X variables and Y , and summing the weights of the
paths. In 1929, Sewall Wright [Asher, 83; Li, 75;] speci-
fied three rules for legal paths. We found that it was pos-
sible to reduce Wright's rules to a more compact form by
introducing the idea of entering or leaving a node by an
arrowhead. In the following rules, entering a node by an
arrowhead means to follow a forward arrow or a correla-
tion link to the node. Leaving a node by an arrowhead
means to follow a backward arrow or correlation link
from a node. These rules for are:

1) A path cannot go through a node twice
2) Once a node has been entered by an arrowhead, no

node can be left by an arrowhead

This is significantly easier to implement than Wright's
rules.

The weight of a path comprising multiple links is the
product of the coefficients along the path. By these rules,
the estimated correlation √rX1Y is just the path coefficient
ρYX1 , which is the empirical correlation rX1Y . However,
√rX2Y = βYX2 + rX2X3βYX3 because there are two paths be-

tween X2 and Y , the first direct and the second indirect
through X3. Similarly, √rX3Y = βYX3 + rX2X3βYX2 because
there are two paths between X3 and Y , one going back-
ward through X2.

4. PATH ANALYSIS OF PHOENIX DATA
Let us illustrate these steps with an example from the
Phoenix system [Cohen & Hart, 93; Cohen et al., 89; Hart
& Cohen, 92]. We ran Phoenix on 215 simulated forest

fires and collected many measurements after each trial,
including:

WindSpeed The wind speed during the trial

RTK The ratio of fireboss "thinking speed" to the
rate at which fires burn

NumPlans The number of plans tried before the fire is
contained

FirstPlan The name of the first plan tried

Fireline The length of fireline dug by bulldozers

FinishTime The amount of simulated time required to
contain the fire

We specified a prediction model and the path model
shown in Figure 3, and solved for the path coefficients on
each link. You can see that the estimated correlation be-
tween, say, FirstPlan and FinishTime is the sum of three
paths

√rFirstPlan, FinishTime = (−. 432×.287) + (.219×.506) +
 (−. 432×.843×.506)
 = −.19
As it happens, this estimated correlation is very close to
the actual empirical correlation, calculated from our data.

WindSpeed

RTK

NumPlans FinishTime

FirelineFirstPlan

-.241

.287

.506

-.183

.491

-.432

.219

-.409

.843

Figure 3: The result of a path analysis of
Phoenix data

 The disparities or errors between estimated and actual
correlations of FinishTime with all the other factors are
shown in Table 1. With the exception of the disparity be-
tween the correlations of WindSpeed and FinishTime ,
the estimated and actual correlations accord well, suggest-
ing that Figure 3 is a good model of our data.

Table 1: Errors in estimated correlations. The first row is
the estimated correlation of FinishTime and the factor
listed in each column; the second row is the actual, empir-
ical correlation.

WS RTK # Pln First Fline

√rFactor FinishTime .118 -.488 .704 -.197 .765

rFactor FinishTime -.053 -.484 .718 -.193 .755

Automating Path Analysis. Cohen et al.

4

5. AUTOMATIC GENERATION OF PATH
MODELS
The question that motivated the current research is
whether models like the one in Figure 3 can be generated
automatically by a heuristic search algorithm. This sec-
tion describes such an algorithm.

The search space for the algorithm is the set of all possible
path models. Path models are graphs which satisfy the
constraints described in section 3. We can represent any
path model then as an adjacency matrix of size N x N,
where n is the number of variables in the model. Thus the
search space is of size 2N2

.

The algorithm uses a form of best-first search. A single
path model constitutes a state, while the sole operator is
the addition of an arc to one variable in the model from
another (possibly new) variable. We begin with a graph
consisting of just the dependent variables. During the
search we maintain a list of all the models and all possible
modifications to those models. Attach step in the search
we select the best modification in the list, apply it to its
target model, evaluate the new model, and add it to the
list. We continue until either we have reached an accept-
able model or we can make no more significant improve-
ments. The most complex issue to be addressed in apply-
ing this algorithm is constructing the evaluation function.

We must first distinguish two senses in which a model can
be "good." A common statistical measure of goodness is
R2 , the percentage of variance in the dependent variable,
Y , accounted for by the independent variables X1, X2,....
If R2 is low, then other variables besides X1, X2,... in-
fluence Y , and our understanding of Y is therefore in-
complete. However, for any set of independent variables,
no model accounts for more of the variance in Y than the
regression model, in which all independent variables are
correlated and all point directly to the dependent variable
(e.g., Fig. 1). No wonder this model accounts for so much
variance: every variable directly influences Y ! It is not a
parsimonious model. Nor is it likely to be a plausible
causal model of any system we analyze. For example, a
regression analysis of the Phoenix data treats WindSpeed
and Fireline as causes at the same "level," that is, both
pointing directly to FinishTime , but we know that
WindSpeed is "causally upstream" of Fireline. In fact,
we know that wind speed influences the rate at which fires
burn, and, so, probably influences the amount of fireline
that is cut. So R2 , the statistical measure of goodness, is
not necessarily the researcher's pragmatic measure of
goodness. The researcher wants a model that is a plausi-
ble causal story, and that includes as few correlational and
causal relations among variables as possible, so causal in-
fluences are localized, not dissipated through a network of
correlations. Such a model will necessarily have a lower
R2 than a highly-connected model, but will often be pre-
ferred. In fact, when we constructed the Phoenix model
by hand, an important measure of goodness was the errors

between estimated and empirical correlations, and we
never even calculated R2 .

Another distinction is between modification evaluation
and model evaluation. Assuming that good models are
clustered together in model space, a few heuristics can
move the search into that general region of the space.
These are the modification heuristics. A model evaluation
function should dominate the search once the modification
evaluation heuristics have brought the search into the right
neighborhood. This is achieved by including the model
evaluation function as a term in the modification
evaluation function.

We rely on a variety of heuristics to guide search toward
good models and to evaluate a path model. We can group
heuristics into three general classes. The first class con-
tains what we might call syntactic criteria:

• no cycles are allowed;
• there must be a path (in the sense of Wright's rules)

from every variable to a dependent variable;
• a dependent variable may have no outgoing arcs.

The second class contains domain independent heuristics.
These apply to any path analysis problem; however, the
weighting of the heuristic may depend on the particular
problem. Some heuristics we have tried are

• R2 , the statistical measure of goodness;
• the predicted correlation error (minimize the total

squared error between the actual correlation matrix
and the predicted correlation matrix for the model);

• parsimony (i.e. the ratio of variables to arcs, or the
number of arcs which don't introduce a new vari-
able);

• the correlation between the variables being connected
by a new link;

• the total number of variables and arcs.

Others which we have considered, but not yet imple-
mented are

• the "attenuation" of the variables and arcs in the
model (the "stretchiness" of the model);

• bandwidth;
• Various adjustments to R2 .

The third class represents domain/problem dependent
forms of knowledge. These include knowledge that

• particular variables are independent;
• particular variables are likely/unlikely causes of oth-

ers;
• a particular range of values for a domain independent

heuristic is appropriate for the problem.

Our evaluation of a modification is a function of these
heuristics. In the current implementation we use a
weighted sum of the actual correlation between the vari-
ables to be linked, the predicted correlation error and the
evaluation of the resulting model.

Automating Path Analysis. Cohen et al.

5

The modification evaluation step hides a good deal of
computation required for the heuristic evaluation func-
tions, including path coefficients in the model and the
correlation estimates between variables. In the basic
algorithm we calculate these parameters from scratch for
each newly generated model. Because these calculations
dominate search cost, we are currently working on im-
proving the algorithm by incrementally calculating
changes to each model's evaluation. This should greatly
increase efficiency.

6. EXPERIMENTS
We have run several experiments to demonstrate the per-
formance of our algorithm and probe factors that affect
performance. In the first experiment we tested whether
the algorithm could generate a model from the Phoenix
data. The second experiment was more exhaustive; for
this we used artificial data.

6.1. EXPERIMENT 1

We provided the algorithm with data from 215 trials of
the Phoenix planner, specifically, Windspeed , RTK ,
NumPlans , Fireline, and FinishTime (we dropped
FirstPlan from the data set). We designated FinishTime
the dependent variable. The search space of models was
large, 2N2 −N = 1, 048,576 , but the model-scoring and
modification-scoring functions were sufficiently powerful
to limit the solution space to 6856 models. When the al-
gorithm terminated, after four hours work on a Texas
Instruments Explorer II+ Lisp Machine, its best two mod-
els were the ones shown in Figure 4. These models have
much to commend them, but they are also flawed in some
respects. A good aspect of the models is that they get the
causal order of WindSpeed , NumPlans , and Fireline
right: the wind speed is causally upstream of the other
factors, which are measures of behavior of the Phoenix
planner. A bad aspect of the models is that both say
WindSpeed causes RTK when, in fact, these are inde-
pendent variables set by the experimenter. However,
probing this curiosity we realized that due to a sampling
bias in our experiment, WindSpeed and RTK covary, so
connecting them is not absurd. A disappointing aspect of
the models is that neither recognizes the important influ-
ence of RTK on NumPlans and the influence of
NumPlans on Fireline. In defense of the algorithm,
however, we note that the algorithm used model scoring
and modification scoring functions that valued R2 , while
we, when we built Figure 3 by hand, were concerned pri-
marily about the errors between estimated and empirical
correlations, and not concerned at all about R2 . Thus we
should not be too surprised that the algorithm did not re-
produce our model in Figure 3.

Although the algorithm ran slowly, and is in some ways
disappointing, it did produce what we believe is the first
causal model of a complex software system ever gener-
ated automatically.

RTK

NumPlans

Fireline

FinishTimeWindSpeed

RTK

NumPlans

Fireline

FinishTimeWindSpeed

Best Model

Second
Best Model

Figure 4: The best and second best Phoenix
models found by the algorithm.

6.2. EXPERIMENT 2

The first experiment raised more questions than it an-
swered: Does the performance of the algorithm depend
on the sample variance for each variable? Does perfor-
mance depend on the number of data for each variable?
How do we know whether the algorithm is finding the
"right" model? To address these and other questions we
ran an experiment in which we constructed path models
that represented "truth" and tested how frequently our al-
gorithm could discover the true models. Specifically, we
followed these steps:

1. Randomly fill some cells in an adjacency matrix to
produce a path model.

2. Randomly assign weights to the links in the path
model subject to the constraint that the R2 of the
resulting model should exceed .9.

3. Generate data consistent with the weights in step 2.
4. Submit the data to our algorithm and record the

models it proposed.
5. Determine how well our algorithm discovered the

true model.

Steps 3 and 5 require some explanation. Imagine some-
one asks you to generate two samples of numbers drawn
from a normal (Gaussian) distribution with mean zero
such that the correlation of the samples is a particular,
specified value, say, .8. Now make the problem more
difficult: generate N columns of numbers so that all their
pairwise correlations have particular, specified values.
Solving this problem (step 3, above) ensures that we gen-
erate data with the same correlational structure as the path
model specified in step 2. The details of the process are
sketched in the Appendix.

We evaluated the performance of our algorithm (step 5,
above) by two criteria:

Shared path score: For each true model, make a list of all
the paths from each independent variable to the dependent

Automating Path Analysis. Cohen et al.

6

variable; what fraction of these paths exist in the model
discovered by our algorithm?

Shared link score: For each true model, make a list of all
the links between variables; what fraction of these links
exist in the model discovered by our algorithm?

Our experiment was designed to test the effects of sample
size on the performance of the algorithm. The Phoenix
data included 215 values of each variable, but for this ex-
periment we looked at four levels of the factor: 10, 30,
50, and 100 data per sample. We thought that the perfor-
mance of the algorithm might deteriorate when sample
sizes became small, because the effects of outlier values
in the samples would be exacerbated. We generated five
true path models with four variables, shown in Figure 5.
For each model we generated 12 variants, that is, 12 sets
of data for variables A,B,C and D that conformed to the
correlation structure established in step 2, above. This
produced 60 models. We ran our algorithm on these vari-
ants in each of the 4 conditions just described. Thus, the
algorithm ran 240 times.

The algorithm found the true model in 109 of the 240 tri-
als. Summary statistics for these trials, and trials in which
the algorithm did not find the true model, are presented in
Table 2. When the algorithm did find the true model, it
explored 174.6 models, on average. This is about four
percent of the 4096 models that were possible. Trials that
did not find the true model explored only 86.96 models,

A B C DA

B
C D

A

B
C D B

A

C

D A B

C

D

Figure 5: Five path models used to test the al-
gorithm.

which suggests that one reason they failed to find the true
model is they gave up too soon. This in turn suggests that
our criteria for terminating a search can be improved.

In all trials, the average score of the best model found by
the algorithm was better than the average score of the true
model. Our immediate inclination was to say the scoring
criteria led the algorithm astray, away from the true
model. However, the disparity between the best model
score and the true model score was less in the trials that
found the true model, which casts doubt on this explana-
tion. The reason for the disparity is actually quite subtle:
when we generate data to match the correlation structure
of each path model (as described in the Appendix), we do,
in fact, generate data that have the expected correlations,
but if we fit the path model to those data, the resulting R2

is lower than expected. Said differently, after assigning
link weights to the true model (step 2, above), the model

R2 might be, say, .95, but after we generate data (step 3)
and fit the data to the model, we find that the model only
accounts for, say, 80% of the variance in the data. This is
an artifact of our procedure for generating data.
Consequently, in most of our trials, the model from which
we generated the data is not the model with the highest
score. This problem will have to be solved before we can
claim that our algorithm found or failed to find the "best"
model.

Table 2. Summary statistics from 240 trials.

Trials that did
find the true
model

Trials that did
not find the
true model

Mean Std. Mean Std.

Number of models 174.600 93.300 86.962 72.770

Best model score .974 .027 .954 .018

True model score .847 .258 .708 .417

Shared path score .612 .202 .565 .133

Shared link score .542 .193 .501 .144

We would like to place more stock in two measures of
structural similarity between the true model and the best
found model. The shared path score is the proportion of
paths in the best found model that also exist in the true
model. For example, the top-left model in Figure 5 has 5
paths from A, B and C to D, so if the best found model
was, say, the top-right model, which has only three paths
from A, B and C to D, then the shared path score would
be 0.6. Another criterion is the shared link score, which is
the fraction of the links connecting variables in the true
model that are also in the best found model.
Unfortunately, neither score strongly differentiates trials
in which the true model was found from those in which it
wasn't. On average, 56-61% of the paths, and 50-54% of
the links, in the true model are also in the best found
model. These numbers are not high. On the other hand, if
the disparity between the true model and the best found
model was just two links, then the average shared link
score would be 52%. So although the shared path and
shared link scores are low, they suggest that the best
found model differed from the true one by little less than
two links on average. Clearly, the algorithm can be im-
proved, but it performs better than the first impression
given by the shared path score and shared link score.

We ran a one-way analysis of variance to find the effects
of the number of data points in our samples. The depen-
dent variables were the five measures in Table 2.
Happily, sample size appears to have no impact on the
number of models expanded by the algorithm, the score of
the best found model, or the shared path or shared link

Automating Path Analysis. Cohen et al.

7

scores. But the sample size has a large significant effect
on the score of the true model. This effect turned out to
be a statistical artifact, due entirely to the sensitivity to
sample size of the method for generating data. Thus, it
appears that the algorithm can work even with relatively
few data.

7. CONCLUSION
We have described an algorithm for path analysis and first
results from experiments with the algorithm. In a crude
sense the algorithm "works," that is, it generates causal
models from data. It works slowly, however, and we have
yet to establish criteria for demonstrating clearly that it
works well. The algorithm's speed can certainly be im-
proved; for example, we keep all models that have been
generated, which takes a lot of space, so paging con-
tributes significantly to the run time. Still, the complexity
of the search space is exponential in the square of the
number of variables. It remains to be seen whether we
can improve the algorithm enough to build large causal
models in a reasonable time.

More important in the near term is whether the algorithm
produces good models. As we noted earlier, goodness can
be evaluated by both statistical and pragmatic criteria.
The algorithm is currently parameterized, which enables
us to adjust the relative importance of the criteria. As you
might expect, if R

2
 is weighted heavily and parsimony is

devalued, then the algorithm will always generate regres-
sion models, in which all variables point directly to the
dependent variable and are fully intercorrelated. If parsi-
mony is also weighted heavily, the algorithm tends to
keep the flat causal structure of regression models, but
drops the intercorrelations among the predictor variables.
If errors between expected and empirical correlations and
parsimony are weighted heavily, then the algorithm will
produce causal models with nodes between the predictor
and dependent variables, such as the models in Figure 4.
All of these kinds of models are good by some criteria.

If by good we mean that the algorithm finds the "correct"
model—the model that corresponds to the system that
generated the data—then evaluation of goodness is tech-
nically challenging. Our procedure was to first decide
upon a path model, then generate data consistent with the
correlation structure of the model, then see whether our
algorithm could find the original model. While the logic
of the experiment is sound, two technical problems arose.
First, it often happened that we generated data that were
better explained by a model other than the original model.
In this case, the "correct" model, that is, the one from
which we generated the data, might be given a low score
by the statistical component (i.e., R2) of the model scor-
ing function. Second, in the event that the algorithm does
not find exactly the "correct" model, but one very like it,
how should we measure closeness? Our criteria, shared
paths and shared links, were not ideal. More needs to be
done to solve both of these problems.

We have yet to answer many questions about factors that
affect the performance of the algorithm. For example, we
ran an experiment to see whether the variance of our sam-
ple data affects performance, but the results were incon-
clusive. We also need to know how the solution space
increases with the number of variables. With four vari-
ables, the algorithm searched roughly 100 models on av-
erage, but with five variables it searched thousands of
models. Clearly, we would prefer this curve to rise less
steeply.

Still, we are encouraged by our results, and by the
promise the algorithm holds for automatically finding
causal models of systems. However ponderous it is, how-
ever difficult it is to evaluate, the fact remains that the al-
gorithm generated causal models of a complex AI plan-
ning system, and promises to be a valuable tool for those
who seek to understand AI systems with statistical meth-
ods.

APPENDIX: DATA GENERATION
Every path model has associated with it a predicted corre-
lation matrix, calculated from its path weights, which de-
scribes the relationships among its variables. For the pur-
pose of data generation, the path weights of a given model
are randomly generated under the following constraints:

• .15 ≤ causal path weights < 1
• .5 ≤ correlational path weights < 1
• all predicted correlations for the model must be less

than one
• .9 < R2 ≤ 1.0

After initialization of the path weights, the predicted cor-
relation matrix is calculated. It is essential that data gen-
erated for a model have the same correlational structure as
the model. The technique for the generation of variates
from a multivariate normal distribution was chosen for its
efficiency and because it returns a variate having the cor-
relational structure underlying the variance-covariance
matrix used to calculate that variate.

A p-dimensional random vector x is defined to have a
multivariate normal distribution if and only if every non-
trivial linear combination of the p components of x has a
univariate normal distribution. The p-variate normal dis-
tribution having mean µ and variance-covariance matrix
V (nonsingular) is defined by the pdf

f (x) = (2π)
− p
2 V

−1
2 exp −.5(x − µ)©V−1(x − µ){ } (1)

The distribution of x can be represented as a linear trans-
formation of p independent normal variates in z , such
that

x = Az + µ (2)

The method for generating x from this distribution in-
volves generating z1, z2, ..., zp independent normal vari-
ates and forming z from them. Since each zp is sampled

Automating Path Analysis. Cohen et al.

8

from the normal distribution with standard deviation 1,
the variance-covariance matrix is equal to the correlation
matrix. A is formed from a Choleski decomposition of V
and µ is chosen to be a zero vector. These values are
substituted into equation (2) to calculate x . The process
is repeated n times, each vector x forming the columns of
a p × n data matrix having n data points for each variable.

Automating Path Analysis. Cohen et al.

9

Acknowledgments

We would like to thank Glenn Shafer for his help with the
development of these ideas.

This research was supported by DARPA-AFOSR contract
F30602-91-C-0076. The United States Government is au-
thorized to reproduce and distribute reprints for govern-
mental purposes notwithstanding any copyright notation
hereon.

References

Asher, H.B. 1983. Causal Modeling. Sage Publications,
Newbury Park, CA.

Cohen, P.R. Empirical Methods for Artificial Intelligence.
Forthcoming.

Cohen, P.R & Hart, D.M., 1993. Path analysis models of
an autonomous agent in a complex environment. To
appear in Proceedings of The Fourth International
Workshop on AI and Statistics. Ft. Lauderdale, FL. 185–
189.

Cohen, P.R., Greenberg, M.L., Hart, D.M. & Howe, A.E.,
1989. Trial by fire: Understanding the design require-
ments for agents in complex environments. AI Magazine,
10(3): 32-48.

Falkenhainer, B.C. & Michalski, R.S., 1986. Integrating
quantitative and qualitative discovery: the ABACUS sys-
tem. Machine Learning 1(1): 367-401.

Glymour, C., Scheines, R., Spirtes, P. & Kelly, K., 1987.
Discovering Causal Structure. Academic Press.

Hart, D.M. & Cohen, P.R., 1992. Predicting and explain-
ing success and task duration in the Phoenix planner.
Proceedings of the First International Conference on AI
Planning Systems. Morgan Kaufmann. 106-115.

Langley, P., Simon, H.A., Bradshaw, G.L. & Zytkow,
J.M., 1987. Scientific Discovery: Computational
Explorations of the Creative Processes. The MIT Press.

Li, C.C. 1975. Path Analysis–A Primer. Boxwood Press.

Pearl, J. & Verma, T.S., 1991. A theory of inferred causa-
tion. Principles of Knowledge Representation and
Reasoning: Proceedings of the Second International
Conference, J. Allen, R. Fikes, & E. Sandewall (Eds.).
Morgan Kaufman. 441–452.

Pearl, J. & Wermuth, N., 1993. When can association
graphs admit a causal interpretation? Preliminary Papers
of the Fourth International Workshop on AI and Statistics.
Ft. Lauderdale, FL. 141–150.

Schaffer, C., 1990. A proven domain-independent scien-
tific function-finding algorithm. In Proceedings of the
Eighth National Conference on Artificial Intelligence.
The MIT Press. 828–833.

Spirtes, P., Glymour, C. and Scheines, R. (1993)
Causation, Prediction and Search. Springer-Verlag.

Zytkow, J.M., Zhu, J. & Hussam, A., 1990. Automated
discovery in a chemistry laboratory. In Proceedings of
the Eighth National Conference on Artificial Intelligence.
The MIT Press. 889–894.

Automating Path Analysis. Cohen et al.

10

