
Genetic Programming to Learn an Agent's
Monitoring Strategy*

Marc Atkin and Paul R. Cohen

CMPSCI Technical Report 93-26

Experimental Knowledge Systems Laboratory
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

Abstract

Many tasks require an agent to monitor its environment, but little is known about
appropriate monitoring strategies to use in particular situations. Our approach is to
learn good monitoring strategies with a genetic programming algorithm. To this end,
we have developed a simple agent programming language in which we represent
monitoring strategies as programs that control a simulated robot, and a simulator in
which the programs can be evaluated. The effects of different environments and
tasks is determined experimentally; changing features of the environment will
change which strategies are learned. The correspondence can then be analyzed.

We present the simulated robot with the task of getting as close to an obstacle as
possible without touching it. We know of two strategies that might be used to solve
this problem: periodic monitoring, and proportional reduction, in which the robot
moves a fixed fraction of the remaining distance to the obstacle between monitoring
events. Our hypotheses concerned the environmental conditions in which each
strategy might be learned. An experiment confirmed some of our hypotheses and left
the status of others ambiguous. At the same time, the experiment revealed new
monitoring stragegies and set the stage for the further exploration of this field.

* This research was supported by DARPA/AFOSR contract F30602-91-C-0076.

Genetic Programming to Learn Monitoring Strategy. Atkin and Cohen.

Genetic Programming to Learn Monitoring Strategy. Atkin and Cohen.

Introduction

It is hard to imagine an agent that does not need to acquire information about its
environment, yet the literature on strategies for monitoring the environment is very sparse.
The most common monitoring strategies are continuous (i.e., offload monitoring to a
dedicated processor) or periodic (see [1] for a survey). However, when monitoring has a cost
and the acquired information is noisy, periodic monitoring is provably not optimal. It does
not exploit knowledge the agent might have about its environment and the events being
monitored, such as approximate probability distributions in time or space for the events. At
the same time, while periodic monitoring is often not optimal, it is difficult to say
analytically what strategy is optimal or even close to optimal, because of the multitude of
factors that influence a strategy (e.g., is it better to monitor or take an action? when is the
best time to monitor? for what? how should the current state of the environment affect my
monitoring strategy? etc.). We therefore use a learning algorithm to find monitoring
strategies appropriate to environments and tasks.

Recent work in automated programming has shown it is possible for a genetic algorithm
to learn programs; in particular, programs that control a robot's behavior (see [2] for an
overview). We use genetic programming to discover monitoring strategies that are difficult
or impossible to derive analytically.

Specifically, our algorithm generates programs that move a simulated robot around a
grid world. The agent's task—to get as close as possible to an obstacle without touching it,
given noisy sensor data—usually can be accomplished more efficiently if it monitors its
environment; so in most situations, it learns a monitoring strategy. After we describe the
testbed and the way the robot's behavior is represented, we will discuss an experiment in
which different monitoring strategies are learned in environments with different features.
We will identify a strategy, proportional reduction, that is in many cases superior to
periodic monitoring. This work is a first step in setting up a general classification scheme
that tells us when to use which strategy.

Testbed Description

We have built a simulator in which populations of simulated robots individually
operate. Although the simulated world is simple—its only feature is an obstacle, plus
dimensions and distance—it allows us to design tasks that require monitoring behavior to
be dealt with effectively. By varying aspects of the environment and the task, we can
create situations in which we expect different monitoring strategies will be most
advantageous. The environment also serves as a testbed in which an agent's monitoring
strategy can be evaluated.

Our simulated robots all perform a single task: to reach a goal point in the environment
while minimizing their energy expenditure. Our robots have three sensors, one to
determine the direction of the goal point, one that reports contact with an obstacle, and a
"sonar" that detects the presence of obstacles along the present heading. A robot can move
forward, turn left and right, turn itself towards the goal, and use the sonar. These are the

Genetic Programming to Learn Monitoring Strategy. Atkin and Cohen.

2

basic actuator functions. Monitoring means using the sonar sensor. All these actions
require energy, and an energy deduction is also charged for hitting the obstacle. In the
experiment described in this paper, we were interested in monitoring strategies that
facilitate the robot's task, that is, enable the robot to get as close to the obstacle as possible
without touching it. If the sonar were 100% accurate, the robot would monitor only once
and move as far as the sonar indicated. In our scenario, however, the sonar sensor includes
a noise component, normally distributed with variance proportional to the distance
measured. A proportionality constant m expresses the accuracy of the sensor. A robot must
therefore monitor repeatedly to keep the probability of hitting the obstacle low, while at the
same time limiting the monitoring cost.

Behavior Representation

The simulated robot is controlled by a program constructed from a language that
consists of actuator commands (MOVE, TURNLEFT, TURNRIGHT, GETGOALDIR,
MONITOR) and a few control structures (LOOP, IF, etc.). The robot's current knowledge
about the environment is held in environmental variables (EVAs). They correspond to the
sensors available to the robot. Two EVAs are updated automatically: EVA0—have I
reached the goal point? and EVA1—have I hit an obstacle? Another EVA is required for
explicit monitoring: EVA 2—is there an obstacle ahead, and if so, how far away is it?.

An agent operating in a real-time environment should be able to respond to external
events immediately. To this end, the normal execution of a robot's program can be
interrupted when a sensor value (an EVA value) changes. Parts of programs are
designated to be interrupt handlers; one interrupt handler is associated with each sensor. If
an EVA value changes and the corresponding interrupt is enabled, then the normal
program flow is interrupted, and the appropriate handler is executed before returning to
the point of interruption.

By disabling and enabling interrupt handlers with explicit commands, a program can
easily give some behaviors priority over others, in effect realizing a behavior hierarchy. For
example, the main program could be responsible for always moving towards the goal point
and monitoring periodically for obstacles, whereas the sonar-associated interrupt handler
(EVA2) would be responsible for turning away from obstacles. It would be executed when
an obstacle is detected ahead—it subsumes the move-to-goal behavior. Such a program was
indeed found when we ran the algorithm on a scenario in which robots traversed an
obstacle-laden environment.

Apart from the choice of actuator and control commands, the interrupt structure was
the only architectural feature provided, so as to leave the robot as much freedom as possible
in developing its programs.

As it is currently implemented, programs are simply fixed-length linear strings of
commands. This distinguishes them from the LISP-style s-expressions used by Koza [3].
While in some ways simpler and more readable, our programs do have the disadvantage of
a length restriction. We therefore chose a program length (30 commands) which we knew
was sufficient to solve the problem. This restriction also forces the robots to come up with

Genetic Programming to Learn Monitoring Strategy. Atkin and Cohen.

3

compact solutions, which enhances their readability and, perhaps, generality. (In addition,
the explicit LOOP construct makes our representation concise; complex sequences of events
need not mean long programs.)

The following example program (Fig. 1) taken from an actual run of the learning
algorithm, demonstrates the proportional reduction monitoring strategy:

Proportional reduction: Repeatedly estimate the distance remaining
to the goal and then move a fixed proportion of the estimated distance.

The proportion determines the probability of overshooting the goal. It is a property of
the proportional reduction strategy that this probability remains constant after each
monitoring event.

Within the program's outer loop, "LOOP4 times", the "MONITOR: EVA 2" command is
executed repeatedly. Nested within this loop is a second one, "LOOP (EVA2) times", which
takes the current distance to the goal (stored in EVA2 after monitoring) and loops over its
value. Four MOVEs are executed in this loop, each moving .1 distance units. Therefore, the
proportionality constant is .4: the robot will move .4 times its estimate of the distance
remaining before monitoring again. The command "IF (EVA2) <= .5 THEN STOP"
terminates the program when the obstacle has reached a critical distance, the
GETGOALDIR points the robot towards the goal. The NOP commands do nothing; they
exist only to make later insertions of new commands easier.

Genetic Programming to Learn Monitoring Strategy. Atkin and Cohen.

4

Main program:
NOP
NOP
TURNLEFT
NOP
LOOP 4 time(s):

LOOP 1 time(s):
GETGOALDIR
NOP
NOP
NOP
MONITOR: EVA 2
NOP
DISABLE: EVA 0
NOP
NOP
MOVE
IF (EVA 2) <= .5 THEN STOP
NOP
LOOP (EVA 2) times:

LOOP 4 time(s):
NOP
MOVE

EVA 0 interrupt handler:
EVA 1 interrupt handler:

IF (EVA 2) <= 4.6 THEN STOP
TURNLEFT
NOP
NOP

EVA 2 interrupt handler:
DISABLE: EVA 1
MOVE
NOP
WAIT

Figure 1: An example program for proportional reduction.

Interrupts are not explicitly enabled in this program, so the interrupt handlers are
never called. Only the EVA2 handler has any real use in this scenario. One possible use of
the EVA2 handler could be to test if the robot is close enough to the goal instead of doing so
in the main loop. Occasionally, programs do actually use the EVA2 handler in this way.
This would mean that the distance is checked immediately after monitoring, since a change
in the distance monitored would cause the interrupt handler to be called.

Note that this program is not pure proportional reduction, because there is one MOVE
statement in the main loop that gets executed independently of the distance monitored.

The robot's program satisfies two goals at the same time: It controls the robot and
describes its strategy. Strategies can sometimes be guessed by looking at a trace of the
robot's actual behavior, but it is preferable to read the strategy from the program directly.
This is one reason we have shied away from parameter-adjustment algorithms: we want to
be able to read the monitoring strategies that our algorithm discovers. As an added bonus,
we can also write programs that read the monitoring strategies in the programs. In fact,
the data from the experiment described later were collected automatically by a program
that reads the programs generated by our algorithm.

Genetic Programming to Learn Monitoring Strategy. Atkin and Cohen.

5

The Genetic Algorithm

Programs are learned by a process of simulated evolution known as genetic
programming. This technique is completely analogous to conventional genetic algorithms
(GAs) except that individuals in the population represent programs (see [4] for an excellent
introduction to GAs).

The main difficulty is to ensure that the genetic operators, mutation and crossing over,
maintain the program's syntactic correctness. We solved this problem by designing the
program interpreter in such a way that all individuals that could possibly be generated are
legal programs. Range restricted values, such as command numbers and some command
parameters, are taken modulo their maximum value, forcing them to be legal. (e.g. the EVA
number in particular commands has the legal range of 0 to 2, so taking the EVA number
modulo 3 will legalize any value). The same trick applies to other parameters, such as the
length of loop bodies, which are taken modulo the program length. Interrupt handlers are
simply random pointers into the linear array of program commands; a handler is defined to
end when another one starts or when the end of the program is reached. Therefore,
changing the start of an interrupt handler by changing the pointer, which can happen
during a mutation operation, cannot affect syntactic correctness.

Learning Procedure:

At the beginning of each run of the GA, a population of 800 individual programs is
randomly initialized; that is, each individual is a random sequence of 30 commands. In
each generation, every individual is evaluated by running the program it represents in the
simulated environment. Because programs need not terminate, the simulation is bounded
by the execution of 1000 program steps.

The individual is then assigned a fitness value based on its average performance on 12
training pairs (start and goal points in the environment) that remain fixed during the
learning process. The fitness of an individual determines its chances of survival and
reproduction. Fitness consists of two terms, a closeness-to-goal reward, which grows
quadratically as the distance between the robot's final position and the goal decreases,
minus the robot's energy expenditure on that trial. As the goal is always placed on an
obstacle (there are no other obstacles in the map), and the penalty for hitting it is very high,
the robot with the highest total fitness is one that goes directly to the goal point, but stops
just before hitting it.

Programs from the best 10% of the population are copied unchanged into the new
generation. The other 90% are selected based on fitness. We used tournament selection
with a tournament size of two: two individuals are selected with replacement and the one
with the higher fitness value is chosen. This corresponds to a selection based on the linear
ranking of an individual within the population (ref. [5] for discussion). These 90% can be
affected by mutation or crossing over: Mutation operator randomly changes commands,
command parameters, or pointers to interrupt handlers in the selected individual's
program. The mutation rate is initially set to affect every 250th command on average, but it
grows, as does the crossing over rate, during long periods in which the best individual does

Genetic Programming to Learn Monitoring Strategy. Atkin and Cohen.

6

not improve. Crossing over simulates sexual reproduction: two random code segments of
equal length are exchanged between two selected individuals. The crossing over rate is
initially set to affect every 10th individual on average.

Performance:

Although the maximum number of generations was set to 1000, the learning algorithm
usually converged within 300 to 800 generations. When there was no improvement in
fitness after 150 generations, the algorithm was stopped.

Premature convergence was often a problem. We hoped to counteract it by using
tournament selection and dynamically adjusting mutation and crossing over rate to the
algorithm's learning rate. Still, there was a considerable variance on the best individual's
fitness when the genetic algorithm was run repeatedly. For example, one typical test case
would produce individuals whose fitness values ranged from 1502 to 1598 (mean 1548,
standard deviation 36.4), corresponding to a set of different monitoring strategies. As the
baseline fitness for a program doing nothing was around 1000 for this case, this means a
variation of up to 15% in terms of fitness improvement. Although many monitoring
strategies have common modules, which is one of the reasons a genetic algorithm should be
appropriate to this problem, once an individual had evolved a suitable strategy, it often
dominated the rest of the population. We finally chose to run the genetic algorithm several
times so as to achieve a better approximation to the best strategy.

The population size of 800 was determined empirically: Although the algorithm's
performance (in terms of fitness values achieved) generally increased as the population
grew, the effect became weaker after about 500. The determination of codelength (30
commands) was handled similarly.

Experimental Hypotheses

Little is known about optimal monitoring strategies such as proportional reduction (or,
for that matter, any other strategies besides periodic monitoring). Psychologists have
shown that 14-year-old children use a form of proportional reduction monitoring when
solving the "Cupcake Problem," which requires them to take cupcakes out of an oven before
they burn, relying on an inaccurate internal clock. Ten-year-olds, however, use periodic
monitoring for the same task, because their internal clock is less accurate or because they
simply have not developed the proportional reduction strategy [6]. Cohen demonstrated
that proportional reduction is optimal if the cost of missing a deadline does not depend on
how badly the deadline is missed, but dynamic programming solutions to a more general
problem show that proportional reduction is only a close approximation to the optimal
monitoring strategy [7].

We wanted to see if and when proportional reduction would emerge in our simulated
robots. We suspected that several features of the environment and the robot would
influence monitoring strategy. The error in the "sonar" data was of particular interest, as
the proportional reduction constant should depend directly on the sonar noise. A lot of
noise should result in a more cautious program (with a low constant) that monitors after

Genetic Programming to Learn Monitoring Strategy. Atkin and Cohen.

7

moving shorter distances. We hypothesized that when sonar data are extremely noisy, the
proportional reduction strategy would show no advantage over periodic monitoring, as the
data no longer contain any useful information. (It is easy to show mathematically that
periodic monitoring is optimal when no information is given about the occurrence of an
event.)

Theoretically, proportional reduction should show more of an advantage as the distance
between the robot's starting position and the goal grows. Imagine a periodic monitoring
strategy that monitors every five distance units; this strategy will monitor six times if the
distance between the start state and the goal is 32. Now imagine a proportional reduction
strategy with .5 as its constant. On average it will monitor once to start and then after
traveling 16 units, then 8, then 4, then 2, then one. But if the distance between the start
and goal states is doubled, the proportional reduction strategy will monitor one additional
time, while the periodic strategy will monitor twice as much. This is why the advantage of
proportional reduction should be more apparent when the start and goal states are more
separated. (Note that this distance cannot be a specific length, but must be a range,
otherwise the genetic algorithm will over adapt to move exactly the required distance,
completely circumventing any need to monitor.)

To summarize our hypotheses:

1. If the monitoring error, m, is 0, a robot should monitor once only.
2. The PR constant becomes smaller as m increases.
3. Periodic monitoring becomes more likely as m increases and path length

decreases.

Experiment Results

We ran the genetic algorithm on five levels of m, the monitoring error (0, 0.5, 1.0, 2.0,
3.0) and three ranges of path length (1–4, 5–10, 12–18). To increase the chances of getting
a good strategy in each of these cases, we repeated the process 10 times with different
random number seeds for the genetic algorithm, taking the overall best program (in terms
of fitness) from these runs as our final result.

This program was then re-tested on 36 start-goal pairs in each specified length range.
Four measures were averaged over the 36 trials to evaluate the program's performance and
strategy:

1. fitness
2. total cost of monitoring
3. percentage of distance traversed while using proportional reduction
4. proportional reduction constant

The first three measures were calculated by an evaluation function directly from the
program's execution trace. The fourth was determined manually by looking at the program;
but it should not be hard to automate also. Note that measure 2 basically tells us how many
times the agent monitored, as monitoring has a fixed cost.

Genetic Programming to Learn Monitoring Strategy. Atkin and Cohen.

8

Figure 2 shows the average fitness values for the final program on the 36 test pairs. For
the most part, fitness values decrease monotonically as m and path length increase, with
the exception of the m=3.0, path length=1–4 situation. Both these effects were predicted:
Longer path lengths mean higher energy consumption, which lowers fitness, and higher
values of m mean more elaborate and energy-consuming monitoring strategies. Note
however that path length has a much greater effect than monitoring error. Apparently the
genetic algorithm copes quite well with finding good monitoring strategies. An ANOVA
shows a clear effect of path length and monitoring error on fitness (for both main effects
p <.0001), but no interaction effect.

distance= 1 to 4

distance= 5 to 10

distance = 12 to 18
1400

1450

1500

1550

1600

1650

1700

m=0 m=0.5 m=1.0 m=2.0 m=3.0

Figure 2: A plot of cell means for a two-way ANOVA, monitoring error (m) by distance. The
dependent measure is the fitness of the best individual to evolve in 12 trials, re-tested on 36

trials.

The exception mentioned above is in fact actually due to the values for the m=1.0 and
m=2.0 (range 1-4) cases being too low. In these cases, the robot hit the obstacle once or
twice on the 36 test pairs, whereas it didn't on the 12 training pairs. Obviously the solution
to this problem is to train on more pairs, but it is a trade-off between better results and run
time of the algorithm.

Genetic Programming to Learn Monitoring Strategy. Atkin and Cohen.

9

 0

10

20

30

40

50

60

m=0 m=0.5 m=1.0 m=2.0 m=3.0

distance= 1 to 4

distance= 5 to 10

distance = 12 to 18

Figure 3: Average monitoring cost for 36 test cases for each of three levels of distance
and four levels of monitoring error.

Figure 3 shows the mean monitoring costs. We had expected to see monitoring cost
increase as path length and especially monitoring error increases. This prediction is only
partly verified. The expected pattern is distorted because when the monitoring error gets
too high, the genetic algorithm does not come up with a monitoring strategy at all, but
instead tries to find a different solution such as deliberately moving past the goal point (to
the left or right) for a distance that is approximately the average of the path lengths of its
training set. Table 1 gives an overview of the best individual's monitoring strategy for each
test case. As you can see, in cases m=3.0, path length 5-10; and m=2.0, path length 5-10, no
monitoring strategy was found. Sometimes (case m=1.0, path length 1-4 and path length
12-18), it will combine the strategy of moving past the obstacle with proportional reduction,
ensuring that if proportional reduction fails, it will still not touch it.

m = 0.0 m = 0.5 m = 1.0 m = 2.0 m = 3.0
length
 1-4

PR2 (**) PR (.7) PR2

(*) (**)
PR (.5)
(**)

check
(*) (**)

length
 5-10

PR2 DPR PR (.4) -- (*) -- (*)

length
 12-18

DPR PR (.7) DPR
(*) (**)

DPR DPR

Key:
PR (c): proportional reduction strategy with proportional reduction constant
PR2: moves a proportion of the squared distance remaining
DPR: disproportionate reduction: moves a proportion of distance remaining

plus a constant distance.
check: stops if obstacle is visible after monitoring
--: no monitoring strategy
(*) deliberately moves past goal to one side
(**) strategy is only capable of monitoring once

Table 1: The best individual's monitoring strategy.

Genetic Programming to Learn Monitoring Strategy. Atkin and Cohen.

10

Interestingly, no program monitors more than once when the path length is very small.
We had expected the "monitor only once" strategy only in the absence of sensor noise, but
apparently, over such short distances, the extra effort involved in coming extremely close to
the goal is not worth the energy necessary to achieve it. Another surprise is that for longer
path lengths and no sensor error, programs still monitor more than once. It is hard to
imagine how this could be advantageous.

Some form of proportional reduction was found in nearly all situations, as Figure4
shows. In fact, in all but one of the cases where a monitoring strategy was found,
proportional reduction was used. Our hypothesis that periodic monitoring would become
dominant for high values of monitoring error was not confirmed. It is important to
mention, however, that periodic monitoring was indeed discovered by the algorithm in
several high-monitoring-error situations, but its fitness was slightly lower than
proportional reduction. The one clear exception is the m=3.0, range=1–4 case. Here, the
robot moves a certain distance, then monitors for the obstacle. If the obstacle is visible
ahead, it stops; otherwise it moves a fixed distance further, curving around the obstacle.
This is notable because it is not a proportional reduction strategy, the sensor data are too
inaccurate; the sensor is used only to detect the presence or absence of the obstacle.

0.0

0.2

0.4

0.6

0.8

1.0

m=0 m=0.5 m=1.0 m=2.0 m=3.0

distance = 12 to 18

distance= 1 to 4

distance= 5 to 10

Figure 4: Percentage of the distance between the starting state and the goal in which the
robot uses the proportional reduction strategy.

The proportional reduction strategy did not usually manifest itself in its pure form.
Frequently, the robot would move a short distance before beginning to monitor with the
proportional reduction strategy. This is not surprising because in many of the trials, the
robot was guaranteed a minimum distance from the goal by the lower bound on the path
length. Sometimes after monitoring, in addition to moving a distance proportional to the
remaining distance, the robot moves a fixed distance as well. We call this "disproportionate
reduction", as the robot is in effect moving a larger proportion of the distance remaining to
the goal as it gets closer to the goal. In pure proportional reduction, this proportion remains
constant throughout the strategy. The example program presented in a previous section
implemented this behavior. Note that the fixed additional distance was usually small with
respect to the distance moved via proportional reduction. It is therefore very possible that

Genetic Programming to Learn Monitoring Strategy. Atkin and Cohen.

11

the extra MOVE commands that cause it are simply a relict of the evolutionary process:
They did not cause much harm, and were therefore not removed in later generations.

Another variant of the original proportional reduction scheme is something we termed
"squared proportional reduction". In this strategy, the robot monitors repeatedly, and
moves a proportion of the squared distance remaining. It is realized by nesting two EVA 2-
loops within each other after the MONITOR command:

MONITOR: EVA 2
LOOP (EVA 2) times:

LOOP (EVA 2) times:
MOVE

As shown in Table 1, this strategy was learned only occasionally. In all the situations
where it occurs, the agent only monitored once, or m=0. In the first case, the proportionality
constant (which corresponds to the number of MOVEs within the doubly nested loop) can be
adjusted to provide a good estimate of the distance remaining given the specific path
lengths. As it is expressed here, we do not see squared proportional reduction as a distinct
strategy. The second case also seems to be a form of over-adaptation: the constant is again
adjusted to fit the particular range of path lengths in that situation. Perhaps with squared
proportional reduction and no monitoring error, the robot can reach the goal faster than
with proportional reduction alone.

Our second hypothesis was that the proportionality constant should decrease as m
grows. The proportionality constant is the proportion of the robot's estimated distance to
the goal that the robot actually moves before monitoring again. Of course this constant is
only really defined in cases of unmodified proportional reduction, which limits our available
data points. But the few applicable cases do show the predicted effect (see Table 1). The
range of the constant decreases from .7 in two of the m=0.5 cases to .4 in the second m=1.0
case. The constant of .5 in the m=2.0, path length = 1-4 case should not be weighed too
strongly as the robot only monitors once here. Even so, it is still close to the previous .4
value.

The evidence for our other hypotheses, that the robot will monitor only once when there
is no monitoring error, and that periodic monitoring will surpass proportional reduction as
m and path length increase, is not so clear-cut. The proportional reduction strategy did
emerge, but frequently not in its pure form. Periodic monitoring never beat proportional
reduction, although it did come close in the m=2.0 cases. Two interesting new monitoring
strategies emerged- ones we hadn't foreseen: disproportionate reduction and squared
proportional reduction. They seem to be quite complementary in their relationship to
unmodified proportional reduction. The first moves relatively greater distances as it
approaches the goal, the second moves more quickly while it is still further away. It is an
open question if either of these strategies is really doing some useful, beyond what pure
proportional reduction can do. But the higher rate of occurrence for the disproportionate
strategy as path length increases might be worth looking into.

Genetic Programming to Learn Monitoring Strategy. Atkin and Cohen.

12

Another phenomenon was also quite surprising: When the monitoring error becomes too
large, programs emerge that try to do without monitoring. It was interesting that the non-
monitoring program in the m=2.0, path length=5-10 case had all the constructs to do
proportional reduction, except the actual (and very expensive) monitoring command. It
seems that these particular individuals had evolved beyond the proportional reduction
strategy, choosing instead a scheme of passing by the goal point and not monitoring at all.

Discussion and Future Work

Genetic programming might turn out to be a very robust way of finding solutions to
hard behavioral control problems such as monitoring. It takes particular advantage of the
modularity of programs, combining them in different ways to find novel solutions. We are
pursuing the idea of learning to construct programs from clearly identified sub-blocks, and
evaluating these blocks in terms of their global usefulness.

Genetic algorithms are however challenging in that they do not guarantee optimal
results. In our experiment, it was often difficult to determine whether a new strategy is
actually an interesting result, or merely sub-optimal. As finding the best possible solution
is the task at hand, there is no absolute by which to judge strategies. Testing strategies in
other domains on similar problems, thus compensating for over-fitting, could provide a
more neutral evaluation.

As a follow-up experiment to this one, it would be interesting to see how well robots can
do if they don't have the constructs to implement proportional reduction. Or when given the
freedom to realize more sophisticated strategies, will proportional reduction still emerge? In
what form? For what other situations are the discovered strategies useful? What features of
the environment determine their success?

Clearly the work presented here is only a first step in achieving an understanding to
how the environment determines what is a good monitoring strategy. To do this topic any
justice, many further experiments are necessary. The ultimate goal must be to find general
rules of when to use a specific strategy; rules that are general enough to be applicable
across domains.

Genetic Programming to Learn Monitoring Strategy. Atkin and Cohen.

13

Acknowledgements

This research was supported by DARPA/AFOSR contract F30602-91-C-0076. The
United States Government is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright notation hereon.

References

[1] Hansen, E.A. & Cohen, P.R. 1993. Monitoring plan execution: A survey. In
preparation for AI Magazine.

[2] Koza, J.R., 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection and Genetics. MIT Press, Cambridge, MA.

[3] Koza, J.R. & Rice, J.P., 1992. Automatic Programming of Robots using Genetic
Programming. AAAI-92, Pp. 194-207

[4] Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA.

[5] Goldberg, D.E. & Kalyanmoy, D., 1991. A Comparative Analysis of Selection
Schemes Used in Genetic Algorithms, in Foundation of Genetic Algorithms
(Gregory J.E. Rawlins ed.). Morgan Kaufman, San Mateo, CA.

[6] Ceci, S.J. & Bronfenbrenner, U., 1985. "Don't forget to take the cupcakes out of
the oven": Prospective memory, strategic time-monitoring, and context. Child
Development, Vol. 56, Pp. 152-164.

[7] Hansen, E.A., 1992. Note on monitoring cupcakes. EKSL Memo #22 .
Experimental Knowledge Systems Laboratory, Computer Science Dept., Univ. of
Massachusetts, Amherst.

