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Abstract

We analyze a tradeoff between early warnings of plan failures and false
positives.  In general, a decision rule that provides earlier warnings will
also produce more false positives.  Slack time envelopes are decision rules
that warn of plan failures in our Phoenix system.  Until now, they have
been constructed according to ad hoc criteria.  In this paper we show that
good performance under different criteria can be achieved by slack time
envelopes throughout the course of a plan, even though envelopes are very
simple decision rules.  We also develop a probabilistic model of plan
progress, from which we derive an algorithm for constructing slack time
envelopes that achieve desired tradeoffs between early warnings and falso
positives.

* This research was supported by DARPA contract F49620-89-C-00113, by AFOSR under an
Intelligent Real-time Problem Solving Initiative, AFOSR-91-0067, by ONR under a University
Research Initiative grant, ONR N00014-86-K-0764, and by Texas Instruments Corporation.
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1 Introduction
Underlying the judgment that a plan will not succeed is a fundamental tradeoff between the cost of an

incorrect decision and the cost of evidence that might improve the decision.  For concreteness, let's say a plan
succeeds if a vehicle arrives at its destination by a deadline, and fails otherwise.  At any point in a plan we can
correctly or incorrectly predict that the plan will succeed or fail.  If we predict early in the plan that it will fail,
and it eventually fails, then we have a hit, but if the plan eventually succeeds we have a false positive.  False
positives might be expensive if they lead to replanning.  In general, the false positive rate decreases over time
(e.g., very few predictions made immediately before the deadline will be false positives) but the reduction in false
positives must be balanced against the cost of waiting to detect failures.  Ideally, we want to accurately predict
failures as early as possible; in practice, we can have accuracy or early warnings but not both.

The false positive rate for a decision rule that at time t predicts failure will generally decrease as t increases.
We analyze this tradeoff in several ways. First, we describe a very simple decision rule, called a slack time
envelope, that we have used for years in the Phoenix planner (Sections 2 and 3).  Then, using empirical data
from Phoenix, we evaluate the false positive rate for envelopes and show that envelopes can maintain good
performance throughout a plan (Section 4).  An infinite number of slack time envelopes can be constructed for
any plan, and the analysis in Section 4 depends on "good" envelopes constructed by hand.  To be generally
useful, envelopes should be constructed automatically.  This requires a formal model of the tradeoff between
when a failure is predicted (earlier is better) and the false positive rate of the prediction (Section 5).  Finally we
show how the conditional probability of a plan failure given the state of the plan can be used to construct
"warning" envelopes.

2 Slack Time Envelopes

Imagine a plan that requires a vehicle to drive 10 km in 10 minutes. Figure 1 shows progress for three
possible paths that the vehicle might follow, labeled A, B and C.  Case A is successful: the vehicle makes rapid
progress until time 3, then slows down from time 3 to time 4, then makes rapid progress until time 8, when it
completes the plan.  Case B is unsuccessful: progress is slow until time 4, and slower after that; and the required
distance is not covered by the deadline.

The solid, heavy line is a slack time envelope for this problem.  Our Phoenix planner (Cohen et al., 1989;
Hart, Anderson, & Cohen, 1990) constructs such an envelope for every plan and checks at each time interval to
see whether the progress of a plan is within the envelope.  Case A remains within the envelope until
completion; case B violates the envelope at time 6.
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Figure 1.  Illustration of envelopes.

When an envelope violation occurs, the Phoenix planner modifies or completely replaces its plan.  It should
not wait until the deadline has expired to begin, but should start replanning as soon as it is reasonably sure that
the plan will fail.  Clearly, envelopes can provide early warning of plan failure; for example, in case B, the
envelope warned at time 6 that the plan would fail.  The problem is that progress might pick up after an
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envelope violation, as shown in case C. At time 5 the envelope is violated, but by time 8, the plan is back
within the envelope.  If in this case the Phoenix planner abandoned its plan at time 5, it would have incurred
needless replanning costs.  Case C is a false positive as we defined it earlier: a plan predicted to fail that actually
will succeed.  Note that a different envelope, shown by the heavy dotted line, will avoid this problem. Unfortu-
nately, it doesn't detect the true failure of case B until time 8, two minutes after the previous envelope.  This
illustrates the tradeoff between early warnings and false positives. (This and other concepts in the paper derive
from signal detection theory, e.g., (McNicol, 1972; Coombs, Dawes, & Tversky, 1970).)

Slack time envelopes get their name from the period of no progress that they permit at the beginning of a
plan.  The Phoenix planner adds slack time to envelopes so that plans will have an opportunity to progress
before they are abandoned for lack of progress.  Until recently, this was all the justification for envelopes we
could offer.  In the following sections, however, we show why the simple linear form of envelopes achieves high
performance, and how to select a value of slack time.

3 The Data Set
One way to evaluate slack time envelopes is to generate hundreds of plans, monitor their execution at regular

intervals, and, at each interval, use an envelope to predict success or failure.  We generated 1139 travel plans, or
paths,  for vehicles in our Phoenix simulation.  Phoenix is based on a machine-readable map of Yellowstone
National Park that includes roads, obstacles, a variety of elevations and ground covers, and other terrain features.
The Phoenix planner fights simulated forest fires in this environment by surrounding the fires with fireline built
by bulldozers.  Envelopes in Phoenix monitor fire spread rate, fireline digging, and  progress in different
bulldozer tasks.  The focus of this paper, however, is a simpler problem: getting from one point on the map to
another by a deadline.  To generate our data set, we repeatedly selected pairs of points 70 km apart as the crow
flies, and asked the Phoenix planner to construct a path between each pair.  Then we simulated the traversal of
each path, monitoring it every 1000 simulated seconds.  At each monitoring step we estimated the distance
remaining to the destination.  Because of obstacles, terrain, and so on, the distribution of remaining distances at a
given monitoring interval was considerable (including many greater than 70 km).  For example, after 5000
seconds, the mean remaining distance was about 54 km with a range of 13.6 to 79.1 km.  We generated, executed
and monitored 1139 paths in this manner.

• •

•

•

•
•

•

•

•
• •

•

•

•

•

x
xx

x

x

x

x

x

x
x

x

x
x

x
x

x
x

x

x

x

time    4           5  distance
remaining

25

27

28

26

• eventual success
x eventual failure

Figure 2.  How we generated distributions of DR for successes and failures at each time interval.

3.1 Distributions of Eventual Successes and Failures Before the Deadline

We chose a deadline of 15,000 seconds to divide the paths into two groups: paths that reached their goals by
the deadline were called successes, and those that did not were called failures.  Of 1139 paths, 654 succeeded and
485 failed.  We looked at each path 15 times, once every 1000 seconds, and recorded an estimate of the number of
"distance units" remaining to the goal. For a variety of reasons, a  distance unit is 2 km, so the distance
remaining to the goal, abbreviated DR, is 35 at the beginning of the plan and zero for successful paths at the end
of the plan.   Henceforth, we use "time x" as shorthand for "x thousand seconds elapsed." For example, in Figure
2, at time 4, all the paths with DR = 28 are failures; at time 5, all the paths with 26 ≤ DR ≤ 28 are failures; but
at time 5, DR = 25, three paths are successes and two are failures.

We plotted frequency polygons for DR for successes and failures at each of the 15 time intervals.  Figure 3
shows the distribution of successes and failures at time 5.  Note that most failures still have a long way to travel
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at time 5: the bulk of the distribution lies to the right of DR = 30 (the mean DR for failures at time 3 is 33).
The distribution of successes, however, is made up of paths with relatively short remaining distances to the goal
(mean DR = 17).

3.2 Empirical Hit Rates and False Positive Rates for DR Thresholds

Let's predict that a path will fail to reach its goal by its deadline if, at time 5, the remaining distance to the
goal is 30 or more, that is, the threshold  DR ≥ 30.  The dark shaded area in Figure 3 represents false positive

Distance remaining (DR)

Distribution of DR for successes and failures 
(heavy line), time = 5.

Distance remaining (DR)

Figure 3. Frequency polygons for DR at time 5.

errors, paths we predict will fail but that eventually succeed.  Of the 654 paths that eventually succeed, 37 lie in
the dark shaded area; the probability of a false positive is therefore 37/654 = 0.056.  The light shaded area
represents hits, paths that are predicted to fail and that actually do fail.  The probability of a hit is 261/485 =
0.538.  The ratio of the probabilities is 9.60.

At time 5, the threshold DR ≥ 30 seems pretty good because the ratio of hit probability to false positive
probability is high, but we cannot say it is the best threshold unless we know the relative values of hits and false
positives.

This is just part of the analysis of our data set.  In particular, we haven't shown our analyses of success and
failure distributions at other times; nor hit and false positive probabilities for different DR thresholds at different
times; nor success and failure distributions for stricter or more lenient deadlines.  We can summarize these analy-
ses as follows:  At later time intervals, the success distribution is increasingly right skewed, with most of its
mass around low values of DR. At intermediate time intervals (e.g., time = 7) the failure distribution is roughly
uniform. Later, it is right skewed like the success distribution, but with more mass in its tail than the success
distribution.  Shifting the DR threshold to the right decreases both hits and false positives, though false
positives decrease faster (as in Fig. 5, only more so at later time intervals).  These patterns hold for stricter and
more lenient deadlines; the main effect of a stricter deadline is to reduce the number of successes.  The following
evaluations of envelopes are based on the 15,000 second deadline illustrated above because it produces a nearly
even split between successes (654, total) and failures (485, total).

4. Evaluation of Slack Time Envelopes
Slack time envelopes are decision rules for predicting whether paths will succeed or fail. As illustrated in

Figure 1, if the path is within the boundary of an envelope at a particular time, then we predict success,
otherwise we predict failure.  Each point on an envelope boundary specifies a DR threshold for a particular time,
and so has an associated hit rate and false positive rate.  In this section we use slack time envelopes to predict
whether paths in our data set, discussed above, will succeed or fail.  We evaluate the predictive performance of
slack time envelopes according to this criterion:  An envelope should provide performance approaching optimal
throughout a plan.
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This depends of course on our definition of optimal.  Consider a decision rule based on distance remaining
(dr) to the goal at time t:

If l(dr, t) > β(t), then predict plan failure

where l ( dr , t ) =
Pr( dr | plan fails , t )

Pr ( dr | plan succeeds , t )

Intuitively, we have an observation of dr at time t, and we must decide whether this observation has been
produced by an eventual success or failure.  We base our decision on whether the likelihood is greater than the
threshold β(t).  A basic result from signal detection theory is that the utility of this decision is maximized if

β ( t ) =
Pr( plan succeeds , t )

Pr ( plan fails , t )
( Payoff ( t ) )

where Payoff ( t ) =
Val(correct rej,t)+Cost( false pos,t)

Val(hit,t)+Cost(miss,t)

In the simplest case, β ( t )  is constant over the course of a plan.  A more realistic assessment requires

analysis of the terms in β ( t ) .  The first term, the prior probabilities, decreases with time, as plans begin to
succeed.  The second term Payoff(t) determines the relative importance of hits, false positives, correct rejections,
and misses.  The value of correctly predicting a plan failure decreases over time; early warnings are worth more.
At the same time the cost of a false positive increases over time; if we are going to unnecessarily abandon a
plan, it is better to do so early in the plan than later when we have invested a lot of time in the plan.  It is more
difficult to assess the value of a correct rejection and the cost of a miss, but if we assume they are constant
relative to the other parameters, then the value of the second term in Payoff(t) increases over time.  We consider
the cases in which Payoff(t) is constant and also in which Payoff(t) increases linearly with time.

Envelopes (dark line) 
and contours

pay(t)=1

pay(t)=5

Figure 4.  Hand-constructed slack time envelopes superimposed on constant Payoff(t) contours.



Early Warnings of Plan Failure and False Positives Cohen, St. Amant and Hart

5

Envelopes (dark line) 
and contours

pay(t)=2+0.1t

pay(t)=2+0.9t

Figure 5.  Slack time envelopes on linear Payoff(t) contours.

4.1. Comparing Slack Time Envelopes with Empirical Utility Contours

Because envelopes are just straight lines, it is unclear whether they can satisfy the optimal performance crite-
rion.  In particular, for constant or linear payoff functions, the DR threshold required to maintain a constant
ratio of hit probability to false positive probability might not change linearly over time.  To find out, we
calculated utility contours from the empirical data for different Payoff(t), as shown in Figures 4 and 5.  A contour
represents a fixed Payoff(t) function; each point on a contour is the DR threshold (y axis) that is required at a
particular time (x axis) to ensure that the utility of the decision is maximized.  In Figure 4 we let Payoff(t)  be
constant at 1 and 5, and in Figure 5 we let Payoff(t)  vary as a function of time.

An important characteristic of these contours  is that they require high DR thresholds for the first few time
intervals, but then gradually smaller thresholds for later time intervals.  Utility contours are roughly linear,
which suggests that a slack-time envelope, fit to one of these contours, ought to provide performance approach-
ing optimal, given our payoff function.  For our data set, at least, Figures 4 and 5 tells us that an envelope can
be constructed to satisfy our performance criterion.  We will formalize this result in the next section.

5. Constructing Slack Time Envelopes: How Much Slack?
Our focus now turns to the task of constructing slack time envelopes. We assume that the end points of the

envelope are the distance to the goal and the deadline, so the only parameter is how much slack time to allow.
Next we present a model that predicts utility for different values of slack time.  The model also predicts the early
warning premium for values of slack time.  Early warning premiums accrue when, by constructing a tight
envelope with little slack time, we detect failures earlier than we would with a looser envelope.  Empirically,
early warning premiums come at the expense of false positives.  We assess a cost for each hit proportional to the
time interval in which it is detected; this places a premium on early hits.  We assess a constant cost for each
false positive.  This is described further in the following sections.

5.1. A Probabilistic Model of Progress

If we know the distributions of distance remaining (DR) for successes at each time interval (e.g., those in
Figure 3) then we can predict the false positive rate for a given DR threshold.  A simple model of the
distribution of DR begins with the assumption that in each time interval a vehicle can progress at its maximum
rate c with probability p, or makes no progress at all with probability q = 1 - p.  Then the distribution of
progress is binomial, as shown in Table 1:  the probability of having made r units progress by time n is just the

binomial probability r
n( )prq(n−r ) .

For example, the probability of one unit progress by time 4 is 4pq3 because there are four ways to achieve
this result, each with probability pq3: we could make no progress until time 3 (with probability q3) and then
progress at the maximum rate for one time unit (total probability, pq3).  Or we could make one
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Time
Progress     1    2    3   4  5

0c q q2 q3 q4 q5

1c p pq 3pq2 4pq3 5pq4

2c p2 3p2q 6p2q2 10p2q3

3c p3 4p3q 10p3q2

4c p4 5p4q
5c p5

Table 1.  Progress in each time interval follows a binomial distribution.

unit of progress by time 3 (with probability 3pq2) and then make no progress for the remaining time unit (total
probability 3pq3). The sum of these options is 4pq3.

The expected progress after N time units is cNp and the variance is cNpq.  If p = q = .5 then the distributions
of progress in each time interval are symmetric.  Otherwise the mass of the distribution at time N tends toward
cN (if p > q) or zero (if q > p).  Important characteristics of this model are that progress is linear and variance
changes linearly with time.

5.2 Utility Contours Using the Model

This model explains the shape of utility contours and slack time envelopes, and it predicts the probability of
false positives for a given envelope.  Let us elaborate the model a little: Our goal is to travel some distance Dg
by a deadline time Tg.  At any time t, we can assess the progress that has been made, D(t), and the progress that
remains to be made, DR(t); and the time remaining, TR = Tg – t.   A success is defined as D(t) ≥ Dg and
t ≤ Tg.  The conditional probability of a success given DR(t), Dg and Tg is:

Pr( success | DR ( t ) ) =
TR

r





 p

r
q

( TR − r )

r = DR ( t )

TR

∑

A similar equation holds for the conditional probability of a failure.  If Payoff(t) is for example constant,
this means means that the ratio of these conditional probabilities must be constant as well.  Now imagine that
we have DR(t) distance remaining at time t and we extrapolate forward TR time units to the deadline.  At this
point we have a binomial distribution with N = TR, divided into a portion below the DR=0 line (the successes,
those cases that have arrived by the deadline) and a portion above the line (the failures.)  The ratio of the areas of
the two portions gives us the ratio of the conditional probabilities.  If we want to find at each time the distance
for which this ratio is constant, we plot a constant z-score for distributions with N ranging from Tg to 0.

Figure 6 shows contours for constant Payoff(t).  Contours for comparable linear Payoff(t) are very similar,
with identical slack times, but more pronounced curve.  To generate the figure we assumed Dg = 25, Tg = 50, p
= .5, and c = 1, and applied the above analysis to get conditional probabilities of success and failure for every
value of t.

Imagine that a vehicle has made 10 units of progress at time 25, that is, DR(25) = 15, illustrated by the
large dot near the center of Figure 6.  Because this dot lies on the contour labelled Payoff(t) = 5, we know that
Pr(failure | DR(25) = 15) / Pr(success | DR(25) =15) = 5.  If the vehicle makes no progress for another five time
units, then the dot would lie to the right of the contour labeled Payoff(t) = 43, so the probability ratio is much
higher.
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Figure 6.  Contours of constant payoff from each point in the space.

These contours vary as t .  At the scale on which we monitor, linear envelopes provide a good
approximation of the contours, as long as the envelope boundaries have the right slope, that is, if they are con-
structed with the right amount of slack time.   Note, too, that Figure 6 justifies the use of slack time in
envelopes:  The contours associated with high payoffs (and thus high ratio of hit probability to false positive
probability) allow a period of no progress at the beginning of the plan.

5.3 Setting Slack Time

A slack time envelope is just a pair of lines, one representing the period in which no progress is required—
the slack time—and another connecting the end of the first to the deadline, as shown in Figures 1 and 6.  Slack
time is the only parameter in slack time envelopes, but we must still show how to set it.

We desire a balance of false positives against early warning premiums.  We have not yet derived from our
binomial model a closed-form expression for the expected number of false positives and early warnings, but we
have an algorithm that produces these expectations for a given value of slack time, if we assume that Dg = .5 Tg:

For each possible value of DR, dri:

a.  calculate te, the time at which the envelope boundary will be crossed, given dri; for
example, in Figure 1, when dri = 5 and t>8, the solid envelope boundary is crossed, so for
dri = 5, te = 8.

b.  use the binomial model to calculate pe, the probability of reaching te; for example if dri = 3
and te = 5, Table 1 tells us that pe = 10p2q3.

c.  use the model to find the probability of a false positive, pfp = Pr(success | DR(te) = dri).

d.  pe x pfp is the probability of a false positive for this value of dri

e.  pe x (Tg - te) is the expected early warning premium for this value of dri.

Tg - te is the time that remains before the deadline at the envelope boundary at dri; this is why Tg - te is
called the early warning premium.  The expected early warning premium for a value of dri is just Tg - te times
the probability of crossing the envelope boundary. The mean expected early warning premium is the mean over
all values of dri of pe(Tg - te). We expect it to have higher values for lower slack times, because the envelope
boundaries for low slack times are further from the deadline.  The mean probability of false positives  is obtained
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by summing pe pfp for all values of dri and dividing by the number of these values. We expect it to rise, also, as
slack time decreases, as suggested by the contours in Figure 6.

With a table of values for the mean probability of false positives and the mean expected early warning
premium, and utilities for early warning and false positives, we can make a rational decision about slack time.

6 Conclusion
Although we rely heavily on slack time envelopes in the Phoenix planner, we have always constructed them

by heuristic criteria, and we did not know how to evaluate their performance.  In this paper we showed that high
performance can be achieved by hand-constructed slack time envelopes, and we presented a probabilistic model of
progress, from which we derived a method for automatically constructing slack time envelopes that balance the
benefits of early warnings against the costs of false positives.

Other work has been done in this area, e.g., (Miller, 1989) constructs an execution monitoring profile of
acceptable ranges of sensor values for a mobile robot (this profile is also called an "envelope").  If, during plan
execution, a sensor value exceeds the envelope boundaries, a reflex is triggered to adjust the robot's behavior in
such a way that the sensor readings return to the acceptable range.  (Sanborn and Hendler, 1988) have used
monitoring and projection in a simulated robot that tries to cross a busy street. The robot has a basic street-
crossing plan, but monitors oncoming traffic and predicts possible collision points which trigger reactive
avoidance actions.  Our contribution has been to cast the problem in probabilistic terms and to develop a
framework for evaluation.  We are currently extending our work to other models of progress and different, more
complex domains.  A technical report covering this work in more detail is in preparation.
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