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Abstract

Phoenix is a multi-agent planning system that fights simulated forest fires. In
this paper we describe an experiment with Phoenix in which we uncover factors
that affect the planner's behavior and test predictions about the planner's
robustness against variations in some of these factors. We also introduct a
technique — path analysis — for constructing and testing causal explanations of the
planner's behavior.
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ment and effectiveness of various firefighting tec
1 INTRODUCTION For example, the rate at which bulldozers dig

o . . varies. with the terrain. Phoenix is a real-time si
It is difficult to predict or even explain the beha {}i?BﬁH?ént—Phoenix agents must think and a

but the simp1e§t Al programs. A program will ECPreads. Thus, if it takes too long to deci
problem readily, but make a complete has o) {;s@rbf action, or if the environment changes

apparently similar problem. For example, our ]% QENXis beine made. a plan is likelv to fail
planner, which fights simulated forest fires, wiﬁ1 contain & &b Y '

one fire in a matter of hours but fail to contailhbRRepix agent, the Fireboss, coordinates the
under very similar conditions. We therefore hidgtatiydties of all field agents, such as bulldo:
claim that the Phoenix planner "works." The clawdtsBtowers. The Fireboss is essentially a tt
not be very informative, anyway: we would mu@Befthepsing reports from field agents to fo
be able to predict and explain Phoenix's behaviofigiAt#ifed global assessment of the world. B:
range of conditions (Cohen 1991). In this pH}fse weports (e.g., fire sightings, position upda
describe an experiment with Phoenix in which w{g§seb it selects and instantiates fire-fighting
factors that affect the planner's behavior &ikg¢ctedield agents in the execution of plan subta
predictions about the planner's robustnesspagainfire is typically spotted by a watchtower
variations in some factors. We also introduce-dpr&g€fiobserved fire size and location to the |
nique—path analysis—for constructing and testingtgatisizl information, the Fireboss selects an ap
explanations of the planner's behavior. Our regelfsotig¢ng plan from its plan library. Typica
specific to the Phoenix planner and will not ngsessddixpatch bulldozer agents to the fire to dit
generalize to other planners or environments, bu{pwhfgsftant first step in each of the three pla
niques are general and should enable others to degpegigaait described below is to decide where
parable results for themselves. should be dug. The Fireboss projects the spread «

In overview, Section 2 introduces the Phoenix PAsghen prevailing weather conditions, then con
Section 3 describes an experiment in which weligi@pgfyof available bulldozers and the proxi
factors that probably influence the planner's beRavtggl fpundaries. It projects a bounding polyg
Section 4 discusses results and one sense in wiie{aipe dug and assigns segments to bulldozers
planner works "as designed." But these results leaperipgigally updated assessment of which segm
unexplained: although Section 4 identifies sonRef&aehgd by the spreading fire soonest. Becausc
that affect the success and the duration of fir thgnany more segments than bulldozer
episodes, it does not explain how these factorsPi#{eesar digs multiple segments. The Fireboss
Section 5 shows how correlations among the fas&&%¢akt to bulldozers one at a time, then waits

affect behavior can be decomposed to test causRHHREE to report that it has completed its
that include these factors. before assigning another. This ensures that :

assignment incorporates the most up-to-date ini

about overall progress and changes in the prevail
2 PHOENIX OVERVIEW tions.

Phoenix is a multi-agent planning system th@nfightplan is set into motion, any number of |
simulated forest-fires. The simulation uses dgsFifrise that require the Fireboss's intervent
elevation, and feature data from Yellowstone Q05H problems and mechanisms for handling
Park and a model of fire spread from the NationyditHig in Howe & Cohen 1990, but one is of t

Coordinating Group Fireline Handbook (Nationa}\ildiferere: As bulldozers build fireline, the Fir
Coordinating Group 1985). The spread of fires is

influenced by wind and moisture conditions, changes in

elevation and ground cover, and is impeded by natural and

man_maqe boundaries such as riYerS’ roads, and ﬁrellli{)lggh it has the same architecture as other agents,
The Fireline Handbook also prescribes many of thenedraraceffectors and is immobile. For a detailed descri

teristics of our firefighting agents, such as rates;gfgngyéent architecture and planning mechanisms see
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compares their progress to expected progress.thiikheaielative to the rate at which the envis
actual progress falls too far below expectationshanpgéan

failure occurs, and (under the experiment scenar%eﬁf&ggs services bulldozer requests for assig
here) a new plan is generated. The new plan us 1dH8%ach bulldozer with a task directive for
bulldozers to fight the fire and exploits any firgline, %gment it builds. The Fireboss can be
has already been dug. We call this error recove s %ﬂ when the arrival rate of bulldozer tas]
replanning. Phoenix is built to be an adaptable p gum' or when its thinking speed is slowed by :
system that can recover from plan failures (&%"‘g‘;f Time Knob. This bottleneck sometimes
Cohen 1990). Alt.hou.gh it has many fallure'fﬁ‘é%’\%lyall digging rate to fall below that require
methpds, .replanmng 1S the focus of the ex%%]t@ﬁ% fireline polygon before the fire reaches
described in the next section. causes replanning (see Section 2). In the worst

Fireboss bottleneck can cause a thrashing effect

plan failures occur repeatedly because the Firek
3 IDENTIFYING THE FACTORS assign bulldozers during replanning fast enougl
THAT AFFECT PERFORMANCE the overall digging rate at effective levels. We ¢
oux experiment to explore the effects of this bott

firmatory purpose was to test predictions that the pYsHigRerformance and to confi.rm our predictio
performance is sensitive to some environmed@fif{}e would vary in proportion to the manip
ditions but not others.3 In particular, we expectdifdfgspeed. Because the current design of th
mance to degrade when we change a fundamentd? R4 gRsitive to changes in thinking speed, we
ship between the planner and its environmth{akgdonger to fight fires and to fail more
amount of time the planner is allowed to think FOf}d them as thinking speed slows.

the rate at which the environment changes—amd cueftbst, we expect Phoenix to be able to figh
sensitive to common dynamics in the environngéfferserahwind speeds. It might take longer and
as weather, and particularly, wind speed. We tesam@ tivea burned at high wind speeds, but we e:
specific predictions: 1) that performance would neffelegradse proportional as wind speed increase
or would degrade gracefully as wind speed increaggghean®@tdenix to succeed equally often at a rang
that the planner would not be robust to changpedds,thitice it was designed to do so.

Fireboss's thinking speed due to a bottleneck problem

described below. An exploratory purpose of the éxperleEXPERIMENT DESIGN

ment was to identify the factors in the FirebosswWechiteted a straightforward fire fighting scen:
ture and Phoenix environment that most affecteddiug@ll@d- for many of the variables known to ¢
ner's behavior, leading to the causal model devslampedrinperformance. In each trial, one fire of
Section 5. initial size was set at the same location (an area

The Fireboss must select plans, instantiate them@idfak@pundaries) at the same time (relative t
agents and monitor their progress, and respord fpepiifpulation). Four bulldozers were used tc
failures as the fire burns. The rate at which thd Rfr¥§gsks speed and direction were set initially
thinks is determined by a parameter called the ¥@4i4¢hgduring the trial. Thus, in each trial, the
Knob. By adjusting the Real Time Knob we allow§aiyes the same fire report, chooses a fire-fight
or less simulation time to elapse per unit CPANdigtispatches the bulldozers to implement it.

effectively adjusting the speed at which the Firelfjyds when the bulldozers have successfully surro
fire or after 120 hours without success.

We designed an experiment with two purposes.

The experiment's first dependent variable then i
which is true if the fire is contained, and false o

2 Expecl‘}ations ab(%ut progr%?s are stored in envelﬁpei edvégsend dependent variable is shutdown time |
represent the range of acceptable progress, given the kno : :
to construct the plan. If actual progress falls outside mﬁﬂ%‘;@l’fggﬁnch the trial was stopped. For success;
envelope violation occurs, invoking error recovery mechanisms
(Cohen, St. Amant & Hart 1992, Hart, Anderson & Cohen 1990).
The term "planner" here refers collectively to all Phoenix
agents, as distinct from the Fireboss agent.
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shutdown time tells us how long it took to cofvhin tlegpplanning is necessary, the Fireboss again
fire.# randomly from among the same three plans.t

Two independent variables were wind speed (WSWaradaheed a basic factorial design, systematicall
setting of the Fireboss's Real Time Knob (RTK). tAethirides of WS and RTK. Because we had not ant
variable, the first plan chosen by the Fireboss dnsignifadant effect of FPLAN, we allowed it to
(FPLAN), varied randomly between trials. It wasduomtly.

expected to influence performance, but because it did, we
treat it here as an independent variable. 4 RESULTS FOR SUCCESS RATE

AND nSHUTDOWN TIME
21%{lgcted data for 343 trials, of which 215 st

§ailed, for an overall success rate of 63%
gtk down successes and failures for each

ﬁﬂgqﬁp_endent variables RTK, WS, and FPLAN. (
S in these tables is the number of Successes, I
number of Failures, and Tot is the total number
RTK: The default setting of RTK for Phoenix agenigah trends emerge in these data that confirm
lows them to execute 1 CPU second of Lisp code fﬁf&ﬁ@ﬁ;@ns_ For example, in Table 1a, the succ
5 minutes that elapses in the simulation. We \{ﬁ};%ﬁq)\;@g steadily as the thinking speed of the
Fireboss's RTK setting in different trials (leaving {f $¢s. However, other patterns are less clear
tings for all other agents at the default). We stgggedifbences for each setting of WS in Table 1
ratio of 1 simulation-minute/cpu-second, a thinkimg,engssty if these values are significantly differ

5 times as fast as the default, and varied the sejtig@Mesl dependent variable such as Success (

values of 1, 3, 5, 7, 9, 11, and 15 simulation- . .
. as only two possible values), a chi-square test |
minutes/cpu-second. These values range from 5.times

normal speed at a setting of 1 down to one—tqiﬁg’%f%%e whether the observed pattern is sta

normal speed at 15. The values of RTK reporteal%rélrfelca%r%t’

rescaled. The normal thinking speed (5) has bEgguses tta-c show the success rates for each se
RTK=1, and the other settings are relative to nor¢agh ifidependent variable. The table categories
scaled values (in order of increasing thinking speetiFpiduee are broken down further into those tr
.33, .45, .56, .71, 1, 1.67, and 5. RTK was sedigt ndlereplan and those that did.

start of each trial and held constant throughout.

ws: The settings of WS in the experiment were 3, 6,
9 kilometers per hour. As wind speed increa‘{% ¢
spreads more quickly in all directions, and mo@tnﬁiuh
downwind. The Fireboss compensates for highé Vatdé
of wind speed by directing bulldozers to build fi
ther from the fire.

FPLAN: The Fireboss randomly selects one of three
plans as its first plan in each trial. The plans differ
mainly in the way they project fire spread and decide where
to dig fireline. SHELL is aggressive, assuming an
optimistic combination of low fire spread and fast
progress on the part of bulldozers. MODEL is conservative
in its expectations, assuming a high rate of spread and a
lower rate of progress. The third, MBIA, generally makes
an assessment intermediate with respect to the others.>

4Several other dependent variables were measured, notably Area
Burned. However, using Area Burned to assess performance requires
stricter experimental controls over such factors as choice of fire-
fighting plan than were used here. X —

S The first plan of this variety developed in Phoenix w§@INaiive projections at the default parameters use
Multiple-Bulldozer-Indirect-Attack, or MBIA, which sig igent.
coordination of bulldozers working at some distance from the Yithesame high-level plans can be used in the initial a'
fireline segments determined by the Fireboss's projections. fisS#Ehnés an subsequent tries. When used in replanning,
variant of MBIA that builds a tighter shell of fireline, thus radapiiegl ttee take advantage of any fireline that has already
cost of forest burned. MODEL is another variant of MBIA thaneapgleefire. It is also based on updated conditions such as
an analytical model of fire projection (Cohen 1990). dizenmaieshape of the fire.
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Figure 1: Successes by a) Real Time Knob, b) Wind Speed, and c) First Plan Tried
4.1 EFFECT OF |INDEPENDENT Table 1a: Trials Partitioned by Real Time Knob.

VARIABLES ON SUCCESS

Table 1a shows successes by the independent Variablgg 1So zFo goot
RTK. A chi-square test on the Success-Failure x RTK con- 45 14 19 33
tingency table in Table 1a is highly significant (X2(6) =56 22 13 40
49.081, p < 0.001), indicating that RTK strongly influ—'z1 ;‘7‘ ‘1‘2 Zg’
ences the relative frequency of successes and failures. At g7 38 11 79
the fastest thinking speed for the Fireboss, RTK=5, the 5 50 2 52

success rate is 98%, but at the slowest rate, RTK=.33, the
success rate is only 33%. Figure la shows grap®i§lib shows successes by wind speed. Thf
that as RTK goes down (i.e., thinking speed decrciiféerenges in success are marginal (X2(2) = 5.:
success rate declines. At RTK=1, the default settfth@6839as we predicted in Section 3. Figure 1b
of the trials were successful. Note how rapidlyCtiiéosig-trend—as WS increases, the success rate
cess of the initial plan decreases—for RTK < .45, no tfigst plan goes up, while the success rate ir
succeeds without replanning. However, thei@veking replanning diminishes. The increase i1
success rate declines more slowly as replanning 18tgsédrtghe first plan occurs because as WS in
recover from the bottleneck effect described in Bb@gsix3verestimates the growth of the fire anc
If we compare the rate of success without repldR@i@gapservative containing fireline.

that with replanning in Figure 1a, we see that replannin
buffers the Phoenix planner, allowing it to absorb Iﬁtél
effect of changes in Fireboss RTK without failing. This y

% 1b: Trials Partitioned by Wind Speed.

S F Tot

effect is statistically highly significant. 3 85 35 120
6 67 50 117

9 63 43 106
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Table 1c shows successes by first plan tried. Diffenengces
in success are highly significant (x2(2) = 16.183, p|<
0.001), which we had not expected when designin% Otl_le
experiment. As shown in Figure 1c¢, SHELL has a very
low success rate without replanning, reflecting it
aggressive character, while the conservative MODEL haan
initial success rate of 65%. MBIA's initial succesgpate is
slightly better than SHELL's (though the difference is ot
statistically significant).

w»

Table 1c: Trials Partitioned by First Plan Tried. >0l —3
FPLAN S F Tot
shell 69 62 131 L — |
mbia 438 35 83 1 2 5
model 98 31 129 RTK

4.2 EFFECT OF RTK ON SHUTDOWN TIME Figure 2. Mean Shutdown Time (in Hours) by Real

Figure 2 shows the effect of RTK on the dependEnobiafirror Bars Show 95% Confidence Intervals.
able Shutdown time (SD). The interesting aSpeE)'h%th,}B%cause bulldozers have a maximum rate
behavior is the transition at RTK=1. SD increaseﬁlgi;

1 h o i ¢ dig. Thus, when the Fireboss is thinkit
ally between RTK=>5 and 1, and the 95% confide 5&&%{%eed and servicing bulldozers with little y
vals around the mean values overlap. Below 1,

WA imarily determined by h h
the slope changes markedly and the confidencenmgg @gu%?man y cetermined by how muc
is '

are almost disjoint from those for values above 1. T

shift in slope and value range for SD suggests a tRr&3$o\yhen a trial ran to completion without
effect in Phoenix as the Fireboss's thinking sp&g A§LANS was set to 1. Each time the Firebe
reduced below the normal setting of RTK. Th&kyypesd #PLANS was incremented. #PLANS is an |
resources in Phoenix is proportional to the tifd@tsjpadicator of the level of difficulty the pla:
fighting fires, so a threshold effect such as this fégtghe particular fire. It also directly affects
a significant discontinuity in the cost funcéefriBgd in Section 2, replanning involves pro
resources used. For this reason we pursued the &8Y¥d9}¥gon for the bulldozers to dig. Typically
this discontinuity by modeling the effects of thé®fi¥gparis larger than the previous one, becaus
dent variables on several key endogenous variaBRSsI0ygpread to a point where the old one is

through them on SD, with the intent of buildingCat8gulige. Thus, the amount of fireline to be ¢
model of the influences on SD. to increase with the number of replanning episod

ovuT: This variable, overall utilization, is the r
5> INFLUENCE OF ENDOGENOUS (¢ (jme the Fireboss spends thinking to the tota
VARIABLES ON SHUTDOWN TIME of a trial. Thinking activities include monito1
We measured about 40 endogenous variables in gh€iesPelient and agents' activities, deciding whe:
iment described above, but three are of particukHolllteMsdug, and coordinating agents' tasks (Cc
in this analysis: the amount of fireline built byjdgobullthe Fireboss is sometimes idle, havin
dozers (FB), the number of fire-fighting plans triegebptiihi€g on its agenda, and so it waits until a
Fireboss for a given trial (#PLANS), and the ovegatlwe-from a field agent or enough time pas
lization of the Fireboss's thinking resources (OVliether action becomes eligible. We expected

FB: The value of this variable is the amount ofONFjiicrease as RTK decreases; that is, as the Fi
actually built at the end of the trial. FB sets a lowaikifg speed slows down, it requires a greater a
proportion of the time available to do the cognis

7 A variable is called "endogenous" if it is influeg&%ugﬁd by the scenario. Replanning only ad«

independent variables and influences, gerhaps indirectly thisepiosstecognitive workload.
endogenous variables, dependent variables.
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5.1 REGRESSION ANALYSIS 52 PATH ANALYSIS

Having identified these variables, we set about qéangifymigue called path analysis (Asher 1983, Li 1
their effects using multiple regression.8 We regiessedsSbiew correlation coefficients of the vari
on WS, RTK, FPLAN, OVUT, #PLANS and FB. These Table 2b as sums of hypothesized influences am
tors accounted for 76% of the variance in SD. Staratardizmdsider the surprising result that wind sg
beta coefficients are often cited as measures of theasdanivelly uncorrelated with shut-down time (
influence of factors; in Table 2a they tell us thaxp8chad WS to have two possible effects on SD:

the largest influence on SD (beta = .759) , with Rgﬁ@é}dl If WS increases then the fire burns f:
OVUT following close behind. But if the beta's reprgsgiithis means more fireline must be built (i

the strength of influence, they are surprising. OVUTihaseases), which will take longer. Therel
negative influence on SD, which is counterintuitivénanehsing WS should increase SD.

appears to contradict the positive correlation (.42 )EbRisve2nFor high wind speeds, if a fire isn't
them in Table 2b. WS and #PLANS have virtuallytaimed relatively quickly, then it might not b
influence on SD, even though #PLANS is stronr%H'HEd at all. For example, if a fire has t

- . ing for 60 hours or more, and WS = 3, th
correlated with SD (.718). And although WS is esse i \bility of the fire being eventually contai

uncorrelatgd With SD ('—.053), it is correlated w.it%rg . But if WS = 6, the probability of eventt
(.363), which in turn is strongly correlated witliohPaining an old fire is only .2, and if WS = ¢
(.755). Finally, WS and RTK are correlated in Tablprdbability drops to .13. We measured SD fo:
(.282), which seems impossible given that they ¢@sséul trials only, because, by definition
varied systematically. In short, the regression an‘éiﬁigcessml trial is one that exceeds a specifi

and the correlation matrix contain counterintuitive &5 out containing the fires. But successful
nt of old fires is relatively unlikely at 1

We will see this is because regression is based oR i speeds, so as WS increases, we see fewer «
implicit model, one that almost certainly doesfingtcontained, thus fewer high values of SD.
correspond to the structure of Phoenix. leads us to expect a negative correlation bet

WS and SD. Note that this correlation represe;

Table 2a: Regression For Y: SD on X's: WS, RTK, FPLAN, effect of missing data, not a true negative c

OVUT, #PLANS, FB relationship between WS and SD.
Path analysis enables us to test a model in whict
ws Bz — B?)tazm tsstagi;;ic of B b1 relatiom,ss, is composed of Effect 1 and Effec
-2. -0. -5. p . . .
RTK <051 033 6503 p < _op1 Which Fancel e.ach‘ other out. Consider, for‘ exar
FPLAN 968 035 827 p < .2p3 path diagram in Figure 3. It shows WS positivel

<
<
<
OvUT -.347 -.438 -4.879 p < .001 encing the amount of fireline that gets built (FB)
P ?NS 3‘6‘321 %ég 111'67:12 p_< 088 positively influencing SD (we will shortly descri
. . . p < .JO01 ] .

the numbers are derived). This path, WS—FB—SD,

sponds to Effect 1, above, and is called an indirect €

Table 2b:  Correlation Coefficients WS on SD, mediated by FB. At the same time, }

rectly and negatively influences SD on the path W
corresponding to Effect 2. Figure 3 shows the sti

WS RTK  FPLAN OVUT #PLNS B

WS 1.000 . e .
RTK 582 1.00 WS—SD is -.377. The rules of path analysis dicte
FPLAN 117 151 1.00( the strength of WS—FB—SD is the product o
OVUT [ -.257 -.913 -.01d 1.00( ; ; -

PINS T —a5—579 150 strengths of the constituent links, WS FB and FI
B 363 -~ 349 —088 288 6394 1T 00d that is, (.363)(.892) = .328. The estimate
SD -.053 -.484 -.193 .4200 71§ .75 correlation between WS amgss), is obtained by

summing the direct and indirect effects, that i
.377 =-0.53. This is the sum of all legal ways fc

8 Multiple regression builds a linear model of the effe'g&fhfl%l%:e SD given the structure in Figure 3.

number of X variables on a continuous variable Y, which in thj : . _ : v
is SD. It fits a hyperplane to the data in an n—dimensionalﬁé@ggéfsi% Figure '%SSD = Twss> but this doesn't

the least-squares method, where n = the number of X var] enlin general,
One of the measures produced by multiple regression is R<, which is
the percentage of variance accounted for by the linear model.
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RTK as an additional causal influence on SD. Fig

Ws shows the implicit model fit by multiple regress
ﬂ‘ Figure 4b shows a model that we think is a bett

363 . sentation of what is actually going on in Phoenix
/ The regression model assumes that all predictor

FB 892 (WS, FB, RTK) are correlated, and assumes all d

R influence the criterion variable (SD). Correlated
Mesp™ 377 +(363)(:892) = -. 053 =1 are linked by undirected paths, which are labele
correlations. Table 2b presents the correlation

derived from our experiment. Multiple regressic

Figure 3: A Simple Path Diagram Showing Three ates standard partial regression (beta) coefficient
Variables and Their Influences. direct path between the predictor and criterion

-  These are -.291, .81 and -.2 in Figure 4a. Each re
Thus we decompose the corrglagidnto two addi-a standardized measure of the influence of one
tive effects: WS increases FB as expected and decrgasessiP on the criterion variable with the effec

(spuriously, as noted above) as expected, and thgsp@ffegedictor variables held constant. The

cancel. regression equation in standard fOrea8 1s F8D-

Path analysis involves three steps: .29 WS - .2 RTK. Because the regression coefficie:

1) Propose a path model (such as the one in FiglgBdardized they can be compared: a unit chai
3). The model represents causal influenceP¥@idHces .81 units change in SD, whereas a unit ¢

directed arrows (e.g., FB—SD) and correlationdN¥§igiroduces -.29 units change in SD. FB is the s
undirected links (see Figure 4a). influence.

2) Derive path coeff!ciegts (§I}1Ch as ‘-37,[7{_ -363 ap@ure 4a represents a decomposition of the cor
-892). The magnitude of a path coefficient isJ{exe sp and the other variables. The correla

preted as a measure of causal influence. . . .
3) Estimate the strength of the relationship bbe reeconstltuted by summing the influences alc
two factors (such as WS and SD) by multip 4$'we did in Figure 3. Path analysis has th:

i .-
path coefficients along paths between the n(ﬁi@mfy ing paths:
and summing the products over all legal p

between the factors %Iﬁo more than one undirected link can be p:

path (e.g., FB—=RTK—SD is legal, but
Step 3 is entirely algorithmic given some simple Wsle§B—-RTK—SD isn't)

(described below) that define legal paths. Step 2 invalpash cannot go through a node twice.

some judgment because some models allow multipgg W3%th can go backward on a directed link, t
to derive one or more path coefficients. A model is af¢@hit has gone forward on another link

cise statement of hypothesized causal influences amBeagvS — SD in Figure 4b is legal but
factors, and the space of models grows combinatofPANNS—FB<-WS in Figure 5 isn't).

with the number of factors, so step 1, proposingRdwegtdlgth of each multilink path is just the p
is apt to benefit from knowledge about the systggy wendtftuent coefficients, so the strength of
modeling.? FB—RTK—SD in Figure 4a is (-.249)(-.2) = .0498,
All three steps will be clearer if we briefly des@ipg1ghed correlation between a predictor and a
relationship between multiple linear regressionvafiidpgds the sum of the strengths of the paths
analysis. They are basically the same thing: bo@R@&R¢@. Thus

path coefficients for a r.no.del. The .differen.ce is simpl Slchzl,t_ 755 = 81 direct FB- path
one particular model is implicit in multiple regression. + (.363)(-.291) FBVEED
Consider an elaboration of Figure 3, in which we add the + (l . 249) (l .2) FBARTK-D

So multiple regression follows the three steps

analysis. First, propose a model, specifically, a m

9 Pearl and Verma are developing efficient algorithms, related to
path analysis, for causal induction (Pearl & Verma 1991).
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WS~__-201 WSS__-377
.363
.363
81 3 o o 892 Y o

.282 FB >
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RTK -2 RTK -.484
a

b

Figure 4. A Shows the Path Model Implicit in Multiple Regression. The Path Model in E
Better Captures the Relationships Among These Variables in Phoenix.

which all predictor variables are correlated ants digrateéy4b a better model than Figure 4a?
linked to the criterion. Second, estimate path coafifisienthie question in two ways. The statistica
specifically, calculate standard partial regressias tbheffino model fits the data better, in te
cients for the direct paths between predictor anaccoutatiog for variance in the criterion variable
variables, and label the undirected links with theegyessjoi-model. But this is hardly surprising v
ate correlations. Third, estimate the correlationsdmstideerthat the regression model assumes ev
each predictor and criterion variable by identifiyifigdrga$ everything else. The system analyst"
paths between them, calculating the strength of isadhgiathe don't want models in which ever
and summing the path strengths. In multiple riegitessions everything else: we want models in
the estimated correlations are always identical tcsomeeattmi$ are left out, in which causal influer
correlations. localized, not dissipated through a network of co1

Multiple regression is a fine way to decomposeL&t)'Isr <, then, what it means fpr one such moc
tions into their component influences if you belié%? @f than another. Again, the Judgment d,epe,n(
multiple regression’s implicit causal model represents well each accounts for the variance in the cr1te.r10
your system. Multiple regression is just path anal?ﬁg w accurately each estimates the correlation
this implicit model, so if you don't believe the i @lb and, how well each represents what we
can propose another and run path analysis on e jggcausal structure of our system. Clear

what we did in Figure 4b. We know that WS andRitgrigdnteract. We can imagine a model that fit

independent because our experiment varied thed c?éBe%nnOt represent what we know  to be _t
Jout often we explore different plausit

dently in a factorial design. (The reason they areSCOM R X )
is the sampling bias identified as effect 2, abovég%%twgs by seeing how well each fits the data.

want to test a model in which WS influences SDdieesthyicture in Figure 5 represents one of ¢
and through FB, and RTK influences SD directly. Fheseedyat the causal structure that relates WS, FP
question is how to estimate the path coefficieRiX tdls®. We expected WS and FPLAN to each di
basic rules, which yield the coefficients in Figureidfiueree both #PLANS and FB, but neither to ¢

1) If W and X are uncorrelated causes of the Crlixefluence SD. We also expected RTK to influence /

eri . S

variable Y, then the path coefficients pyyx elnclaﬂ%?5 S5 directly. We thought #PLANS might influc
are just the correlation coefficients ryy andg,SD- We made these guesses based on regress
respectively. yses, the correlation matrix in Table 2b, some

2) If W and X are correlated causes of the criféfis shown earlier, and our general knowled

variable Y, then the path coefficients pyx andgyy, the Phoenix planner works.

are the standard partial regression Coefﬁdenﬁf%i‘xestimating the path coefficients as shown i

and b'yw « x , respectively, obtained from the . .
e gressi on of ¥ on Xgnd W Y , Wé estimated the correbdfidmtween SD and eact
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variable i. The estimates and the actual correlatiomayapdass before they make much progress, re:

follows:
WS FPLAN RTK  #PLANS B
Ny [ 118 | 197 | 533 ] 719 778
g | 053 | 193 | -.484 | .718 755
RTK:
-.241
-.409
ws_ =183 o 4piaNns—287 % sp
491 1.843
-432 -506
Z___»
FPLANZ > FB

Figure 5: Path Model Relating Variables Influencing

Shutdown Time.

an increase in #PLANS. To test this we intro
another variable, OVUT, which measures the pe:
of time in a trial that the Fireboss spends plani
expected OVUT to decrease with RTK, supporti
thrashing explanation. Figure 6 shows a modifi
Figure 5, with the path RTK—=OVUT—#PLANS inste
RTK—#PLANS.

For this model, estimated correlations between S
the other variables are not appreciably different
were for the model in Figure 5. But it appears
variable OVUT does not add much to our underst:
thrashing, because it is completely determined
Consider what happens when we derive path cos
for a slightly different model (Figure 7). In tk
OVUT has almost no influeRgesh as = -032) on

#PLANS. Recall, however, that this path coefficier
standardized partial regression coeffi

bovur #pLans ik AL IS, the effect of OVUT on #PLA

with RTK held constant. The fact that this nuw
nearly zero means that OVUT has no effect on ¢
when RTK is held constant; in other words, the effect

Except for the disparity between the estimated andiac@natPLANS is due entirely to RTK.

correlations between WS and SD, this model accounts
pretty well for the actual correlations. At this point,
wanted to explain the influence of RTK on #PLANS.
Why should decreasing RTK (slowing the Fireboss'
thinking speed) increase the number of plans? O
explanation is something like thrashing: There is always > #PLANS—> ...
the possibility that the environment will change in such a ¢

way that a plan is no longer appropriate, but this is much

more likely when the environment changes rapidly reldtive

to planning effort (i.e., when RTK is decreased kg fb#S,showing the Effect of OVUT on #PLANS is Du

decreasing RTK means the Fireboss will have to throw

a

R k\ 4
--2 1
-.913 OoVUuT

l 379

FB

#PLANSL> SD
l .843
.506

Figure 6: Adding the Endogenous Variable OVUT

Entirely to RTK.

6 CONCLUSION

We have presented results of an experiment 1
Phoenix planner that confirm our predictions th
formance would be sensitive to some environmen
tions but not others. We have shown that the
not sensitive to variation in initial wind speed, a
environmental dynamic it faces. On the other 1
results show that performance degrades as we -
fundamental relationship between the planner ar
ronment-the rate at which the Fireboss agent th
we slowed the Fireboss's thinking speed in the ex
by decreasing RTK, performance degraded to t
where no plan succeeded on the first try. How
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planner was still able to succeed in many cases By replan-
. . . eferences
ning. While the success rate using replanni SO

a
degrades, replanning acts as a buffer, preventingsﬁﬂ%rpﬁﬁi 1983. Causal Modeling. Sage Publicatio
ner from failing catastrophically when it can't €oindnfa®R., St. Amant, R. & Hart, D.M. 1992.
enough to keep up with the environment. Thewdatziragsoof plan failure, false positives, and en
show that replanning exerts a large influence obxplorivdents and a model. Dept of Computer ¢
have presented a causal model, developed using etihninzl-Report #92-20, University of Massac
ysis, of the effects on SD of the various indeperAimherstd

endogenous variables we measured. Cohen, P.R. 1991. A survey of the Eighth Na

Replanning occurs when the environment doesitmfiezerite on Artificial Intelligence: Pulling tog

the Fireboss's expectations. In the current experfjmHirig thigart? Al Magazine 12(1): 16-41.

rate at which the expect.ati(')ns became invalid wﬁhs%%’ly& 1990. Designing and analyzing sti

RTK. But the effect was indirect: Low RTK ensurg BAbenix from models. Proc. of the Workshop

the Fireboss would be _Swamp_ ed (OVU_T)’ Whld_l mﬁ'ﬁ\ﬂ\'fa? gkpproaches to Planning, Scheduling and Con-

bulldozers had to wait for instructions, which r(!)fllf) .21, Morgan Kaufmann

increased the probability that they would not {)e able to )

carry out their instructions by their deadlines. ThhR0wiaR., Greenberg, M.L., Hart, D.M. & Hc

caused plans to fail. Environmental changes wer&daly¥89. Trial by fire: Understanding the

instrument of the problem; RTK initiated it. Butrf&gdeeganents for agents in complex environme

tions, and thus plans, can also fail if the enviYaggnend 0(3): 32-48.

itself changes. We have yet to study whether replanning1., Anderson, S.D. & Cohen, P.R. 1

makes Phoenix robust against these changes, thomglopel as a vehicle for improving the effici

results with RTK suggest it does. plan execution. Proc. of the Workshop on Innovative Ap-
proaches to Planning, Scheduling, and Control. Pp. 71-
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