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As fields mature,
they produce sub-
fields; AI has one or
two dozen depend-
ing on how you
count. Subfields are
differentiated by
subject and method-
ology, by what they
study and how they
study it. Subfields in AI study intelligent 
functions such as learning, planning, under-
standing language, and perception and
underpinnings of these functions such as
commonsense knowledge and reasoning. We
could debate whether it makes sense to study
intelligence piecewise—you solve vision and I
solve planning, and someday we might get
together to build autonomous mobile robots—
but this concern is not the main one here. If
AI researchers are not pulling together, if the
field is pulling apart, it is less because we
study different subjects than because we have
different methods. To support this claim, I
present the results of a survey of 150 papers
from the Proceedings of the Eighth National
Conference on Artificial Intelligence (AAAI-
90) (AAAI 1990). I offer evidence for four
hypotheses: First, AI research is dominated by
two methodologies. Second, with respect to
the goal of developing science and technolo-
gy to support the design and analysis of AI

systems, neither methodology is sufficient
alone. Third, the bulk of AI research conse-
quently suffers from familiar methodological
problems, such as a lack of evaluation, a lack
of hypotheses and predictions, irrelevant
models, and weak analytic tools. Fourth, a
methodology exists that merges the current
“big two” and eliminates the conditions that
give rise to methodological problems. My
survey provides direct statistical support for
the first claim; the other claims are supported
by statistical evidence and excerpts from the
papers presented at AAAI-90.

This presentation has three parts: a summa-
ry of the survey and general results, a discus-
sion of the four hypotheses, and two sections
at the end of the article that contain details of
the survey and statistical analyses. The next
section (The Survey) briefly describes the 16
substantive questions I asked about each
paper. One of the closing sections (An Expla-
nation of the Fields in Table 1) discusses the
criteria for answering the survey questions

and illustrates the
criteria with excerpts
from AAAI-90 papers.
In General Results,
broad, descriptive
statistics characterize
the papers, whereas
statistical tests of 
my hypotheses are
described in Four

Hypotheses and in Statistical Analyses. Argu-
ments against my proposed methodology
(introduced in Hypothesis 4: A Sufficient
Methodology Exists) are considered but not
conceded in Anticipating Arguments against
Modeling, Analysis, and Design.

I acknowledge that methodological papers
are unpalatable for a variety of reasons. How-
ever, they indicate that the field is approach-
ing maturity (DeMey 1982) and, thus, should
be welcomed for this reason if not for the
problems they raise. In fact, this article is
extremely positive because unless I badly mis-
read the field, it should be easy to remove the
structural, endogenous causes of our method-
ological problems. Then, we only have to
worry about conservatism and other sociolog-
ical impediments, which can be addressed in
curricula and editorial policy.

The Survey
The survey covered 150 of the 160 papers
from AAAI-90. I read all the papers and omit-
ted the 10 that I did not understand or that
did not easily fit into table 1. Each paper is
characterized by the 19 fields in table 1. I
only briefly describe these fields here to
quickly get to the survey results (the reader
should consult An Explanation of the Fields
in Table 1 for detailed descriptions of the
fields). Two kinds of data were collected from
each paper: the purpose of the research and
how the paper convinces the reader that its
purpose was achieved. Fields 3–8 of table 1
represent purposes, specifically, to define
models (field 3), prove theorems about the
models (field 4), present algorithms (field 5),
analyze algorithms (field 6), present systems
or architectures (field 7), and analyze them
(field 8). These purposes are not mutually
exclusive; for example, many papers that 
present models also prove theorems about 
the models.

Not only were
average-case
hypotheses
and predic-
tions rare, so
too were
follow-up
experiments.
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A survey of 150 papers from the Proceedings of
the Eighth National Conference on Artificial
Intelligence (AAAI-90) shows that AI research
follows two methodologies, each incomplete
with respect to the goals of designing and ana-
lyzing AI systems but with complementary
strengths. I propose a mixed methodology and
illustrate it with examples from the proceedings.
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formal semantics for models that previously
included vague terms (for example, proba-
bilistic semantics for costs). More than half
the papers in the proceedings present algo-
rithms (field 5), and many also analyze the
algorithms (field 6). Complexity analyses
dominate. Surprisingly, only 45 papers pre-
sent systems (field 7), and even fewer analyze
systems (field 8). The distinctions between
models, algorithms, and systems are some-
what subjective and are illustrated in An
Explanation of the Fields in Table 1.

Fields 9–18 in table 1 represent method-
ological tactics for convincing the reader that
the purpose of a paper was achieved. The

Models are formal characterizations of
behaviors (for example, two papers from
AAAI-90 present models of cooperative prob-
lem solving) or task environments (for exam-
ple, several papers focus on recursive problem
space structures). Some papers extend models
to incorporate new behaviors (for example,
extending ordinary constraint-satisfaction
problem solving to include dynamic con-
straints on variables). Some papers generalize
models, and others differentiate them, demon-
strating on the one hand that two or more
models have a common core and on the
other that a model fails to distinguish behav-
iors or task environments. Some papers provide
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1. Paper ID number

2. Paper classification

3. Define, extend, generalize, 72
differentiate, semantics for models

4. Theorems and proofs re: model 49

5. Present algorithm(s) 84

complexity formal informal

6. Analyze algorithm(s) 61 27 19 15

7. Present system 45

complexity formal informal

8. Analyze aspect(s) of system 21 5 3 13

natural synthetic abstract

9. Example type 133 39 24 70

natural synthetic abstract

10. Task type 63 32 9 22

embedded not embeded

11. Task environment 63 28 35

12. Assess Performance 38

13. Assess Coverage 4

14. Comparison 24

15. Predictions, hypotheses 25

16. Probe results 18

17. Present unexpected results 8

18. Present negative results 4

19. Comments

Table 1. The Classification Scheme for AAAI-90 Papers.
The number of papers in each classification is shown in the columns. For example, of 61 papers that analyze algo-
rithms, 27 offer complexity analyses, 19 present other formal analyses, and 15 give informal analyses. Where possi-
ble answers are not listed, the answers are yes and no, and the number of yes answers is reported. For example, 18 of
the 150 papers probe results. There are no mutually exclusive subsets of fields (although the answers to the question
in each field are mutually exclusive), so each paper can contribute to the total for every field.



most common tactic was to present a single
example (field 9), but many papers report
studies involving multiple trials designed to
assess performance (field 12), assess the cover-
age of techniques on different problems (field
13), or compare performance (field 14). Three
fields in table 1 describe examples and tasks
(fields 9, 10, and 11). Natural examples and
tasks are those humans encounter, such as
natural language understanding, cross-coun-
try navigation, and expert tasks; synthetic
examples and tasks share many characteristics
with natural tasks but are contrived (for
example, simulations of robots in dynamic
environments); abstract examples and tasks
are designed to illustrate a single research
issue in the simplest possible framework (for
example, N queens, the Yale shooting problem,
Sussman’s anomaly). Some papers describe
techniques embedded in a larger environment
(for example, temporal projection embedded
in a planning system).

Relatively few papers present hypotheses or
predictions (field 15). The criteria for what
counts as hypotheses and predictions are dis-
cussed in An Explanation of the Fields in
Table 1. However, because the absence of
hypotheses in AAAI-90 papers is central to
this article, I must note here that worst-case
complexity results—which are common in
AAAI-90 papers—did not count as hypotheses
or predictions. They are predictions of a sort
but predictions of performance in the most
extreme circumstances, and they tell us noth-
ing about how common the worst-case cir-
cumstances are apt to be or how techniques
will behave in average cases. Not only are
average-case hypotheses and predictions rare,
but follow-up experiments to probe previous
results (field 16) and reports of negative and
unexpected results (fields 17 and 18) are as
well. Because hypothesis testing, follow-up
studies, and replications with extensions are
common and compelling methodological 
tactics throughout the sciences, their absence
from AAAI-90 papers is troubling.

The survey involved subjective judgments,
but no reliability studies were performed. This
caveat and related concerns are discussed fur-
ther in Statistical Analyses. To compensate for
the lack of reliability, the criteria for classifying
the papers are discussed in detail and illustrated
with excerpts from the papers themselves in An
Explanation of the Fields in Table 1. Excerpts
from the papers are referenced by the follow-
ing convention: Each is identified by a single
number that is either the page number in the
proceedings on which the excerpt can be
found or the page number of the first page of
the paper. A few excerpts are unattributed.

General Results
Of the 150 papers surveyed, most include
one or more examples (field 9), but fewer than
half describe a task and trials of a system
beyond a single example (field 10); only 45
papers demonstrate performance in some
manner (fields 12, 13, and 14). One hundred
and four papers offer some kind of analysis
(see definition later). Twenty-four papers
probe or otherwise examine results (fields 16,
17, and 18), and 25 papers present hypothe-
ses or predictions (field 15).

These results are summarized in figure 1.
The general picture is that the AAAI-90 pro-
ceedings contains preliminary, often uneval-
uated work. Although one would expect to
see hypotheses and predictions even in pre-
liminary research, these are notably absent
from AAAI-90 papers.

Four Hypotheses
“AI is two schools of thought swimming
upstream.”

—C. R. Beal

This survey provides support for four
hypotheses about the current state of AI

research: First, most AI research is conducted
with two methodologies that in the past have
been associated with neat and scruffy styles
of AI research. Second, with respect to the
goals of providing science and technology to
support the design and analysis of AI systems,
neither methodology is sufficient alone.
Third, common methodological problems
arise because AI’s methodologies are insuffi-
cient for its goals. Fourth, by combining
aspects of the two methodologies, we get
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89%  offered one or more examples

42%  described trials beyond the examples

16% probed results

69% provided some analysis

17% presented hypotheses or predictions

30%  demonstrated performance

150 papers

Figure 1. Summary of Results from the Survey of Papers in AAAI-90. 



some kind of analysis of the
algorithms (field 6). The third
set, SYSTEMS, contains papers
that present systems or analyses
of systems (fields 7 and 
8, respectively). One paper
belongs to none of these
classes. This result causes some
totals in the subsequent analy-
ses to be one less than indicat-
ed in table 1.

The overlap between MODELS and ALGS is
considerable, whereas few papers belong to
these classes and belong to SYSTEMS. As
shown in figure 2b, I denote as model cen-
tered the papers in MODELS, ALGS, and
MODELS ∩ ALGS (104 papers in all). I refer to
papers from SYSTEMS as system centered (37
papers in all). Eight hybrid papers reside in
the intersection of these two classes.

Model-centered papers represent one
methodology and system-centered papers
another. To show that these methodologies
are both real and significantly different, I
adopt the following strategy: Starting with
the classification of papers in figure 2b, I test
whether the classifications are correlated with
methodological choices represented by fields
9–18 of table 1. For example, if most system-
centered papers present natural examples,
and most model-centered papers present
abstract examples (field 9), then because this
distribution of task types is unlikely to have
occurred by chance, the classification of a
paper as system centered or model centered
implies a methodological choice, namely, the
choice of an example. Simple statistical tests,
described in Statistical Analyses, tell us
whether the methodological choices in fields
9–18 are independent of the classifications in
figure 2b. In general, they are not: System-
centered papers represent different method-
ological tactics than model-centered papers.

The following items describe how system-
centered and model-centered papers differ
methodologically. Details of the analyses are
described in Statistical Analyses.

Model-centered papers present different kinds
of examples than system-centered and hybrid
papers. In particular, 76 percent of the model-
centered papers give abstract examples or no
examples at all, whereas 84 percent of the
system-centered and hybrid papers deal with
natural or synthetic examples. This result is
highly significant (χ2(6) = 55.5, p < .0001).

The classes MODELS, ALGS, and MODELS
∩ ALGS (figure 2) could not be differentiated
by the kinds of examples they contain.
Eighty-four percent of the papers in MODELS,
81 percent of the papers in MODELS ∩ ALGS,

another methodology that is less prone to
these methodological problems. The follow-
ing subsections discuss the evidence for these
hypotheses. Hypothesis 1: Two Methodolo-
gies presents statistical evidence to support
the two-methodology hypothesis; the other
hypotheses are supported by a combination
of statistical evidence and excerpts from the
AAAI-90 papers. The third hypothesis, which
claims a causal relationship, is only indirectly
supported when I show that methodological
problems are present when the two method-
ologies are individually practiced and absent
when aspects of the two methodologies are
combined. The third hypothesis is important
because it claims that many or all of AI’s
methodological problems have a common
root, thus suggesting that these problems can
be corrected en masse. The fourth hypothesis
is supported by descriptions and demonstra-
tions of aspects of the combined methodolo-
gy presented in some AAAI-90 papers.

Hypothesis 1: Two Methodologies

To support the first hypothesis—that AI is
dominated by two methodologies—I classify
the AAAI-90 papers by some of the fields in
table 1 and show that the classification pro-
duces two clusters of papers with few papers
in common. Then, I demonstrate that the
papers in these clusters represent different
methodologies, called model centered and
system centered, respectively.

I used fields 3–8 of table 1 to classify the
papers into three sets and their intersections,
shown in figure 2a. The first set, MODELS,
includes those papers that had “yes” in fields
3 or 4, that is, papers that deal with models.
Twenty-five papers deal with models alone,
43 deal with models and algorithms, 1 deals
with models and systems, and 4 deal with all
3 topics. The second set, ALGS, includes all
papers that present algorithms (field 5) or
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MODELS ALGS
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MODEL-CENTERED

HYBRID

SYSTEM-CENTERED

Figure 2. Papers in AAAI-90 Classified by Fields 3–8. 
A. By number. B. By methodology.



and 64 percent of the papers in ALGS give
abstract examples or no examples at all.
Because the papers in MODELS, ALGS, and
MODELS ∩ ALGS present the same kinds of
examples with roughly the same relative fre-
quencies, one is justified in combining the
papers in these sets into the single class of
model-centered papers. The papers in
MODELS are preimplementation and tend to be
definitional, whereas those in ALGS and
MODELS ∩ ALGS typically describe imple-
mented algorithms. These differences, howev-
er, are statistically independent of the kinds
of examples that motivate the papers.

Recall that some papers describe tasks, that
is, multiple trials beyond a single illustrative
example. As with examples, tasks are classified
as natural, synthetic, abstract, and none (field
10), and as with examples, we find differences
between model-centered and system-centered
papers in the kinds of tasks they address:
Eighty-five percent of the model-centered
papers describe abstract tasks or no tasks at
all, whereas 58 percent of the system-centered
and hybrid papers describe natural or synthet-
ic tasks. This result is highly significant (χ2(6)
= 55.4, p < .0001). None of the 25 papers in
MODELS addresses a task, which is not sur-
prising if we view them as preimplementation
papers, but I was surprised to find that 41 per-
cent of the system-centered papers describe
no task, that is, nothing more than a single
illustrative example. Still, a greater proportion
of system-centered papers (59 percent) than
model-centered papers (33 percent) describe
tasks (χ2(2) = 11.9, p < .005).

Of the papers that do report multiple trials
on tasks, 86 percent of the system-centered
and hybrid papers describe embedded task
environments, whereas 88 percent of the
model-centered papers describe non-embedded
task environments. Again, this result is highly
significant (χ2(2) = 33.9, p < .0001) but hardly
surprising: By definition, the techniques dis-
cussed in system-centered papers are embedded
in a system (otherwise, the paper wouldn’t
have been classified as system centered in the
first place). The surprise is that model-centered
papers (mostly from ALGS) were tested so
rarely in embedded task environments—in
systems or real physical environments.

Model-centered and system-centered papers
differ in their orientation toward assessing
performance, assessing coverage, and compar-
ing performance (fields 12, 13, and 14, respec-
tively). A paper presents a demonstration if it
reports at least one of these three activities.
Remarkably, a higher proportion of model-
centered papers (30 percent) than system-
centered papers (22 percent) present demon-

...system-
centered
papers 
represent  
different
methodologi-
cal tactics
than model-
centered
papers.
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strations, even though 25 model-centered
papers (from MODELS) are preimplementa-
tion papers with nothing to demonstrate. Sta-
tistically, this result is suggestive but not
significant (χ2(2) = 5.29, p < .07). However, if
we look at the papers that describe a task
(field 10), thereby declaring their intention to
demonstrate their techniques on multiple
trials, and ask the question again, we get a
highly significant result: Thirty-six percent of
the system-centered papers that describe a
task also present demonstrations, compared
with 91 percent of the model-centered papers
and five of the six hybrid papers (χ2(2) =
19.97, p < .001). Even though more system-
centered papers describe multiple trials on
tasks, relative to model-centered papers, fewer
present successful demonstrations. It seems
easier to demonstrate the performance of an
algorithm on an abstract problem than an
entire system on a natural or synthetic prob-
lem. (See An Explanation of the Fields in
Table 1 for a list of abstract problems.)

Recognizing that demonstrations are only
one way to evaluate a technique (and not a
particularly informative one at that), I looked
at whether system-centered and model-centered
papers have different propensities to analyze
their contributions. I found that 79 percent of
the model-centered papers, 75 percent of the
hybrid papers, and just 43 percent of the
system-centered papers report any kind of
analysis. This result is highly significant
(χ2(2) = 16.5, p < .0005); however, these
results are not strictly comparable with the
previous ones because they depend on a
slight redefinition of system centered, model
centered, and hybrid (see Statistical Analyses).

Finally, I looked at the relative frequencies
of hypotheses, predictions, probes, unexpect-
ed results, and negative results (fields 15–18,
respectively). I had hoped to analyze these
fields separately, but only field 15 (hypothe-
ses, predictions) contained enough data to
support statistical tests. By combining the
fields, I was asking whether the researcher
had any expectations beyond the common
assertion that a technique will work (see An
Explanation of the Fields in Table 1 for
descriptions of fields 15–18). Once again, I
found a significant effect of methodology:
Twenty-two percent of the model-centered,
11 percent of the system-centered, and 62.5
percent of the hybrid papers have expecta-
tions (χ2(2) = 10.5, p < .01). Although few
papers overall give evidence of expectations,
the model-centered and hybrid papers do so
more often than the system-centered papers,
suggesting that the models in the model-cen-
tered papers might offer a small advantage in



Hypotheses 2 and 3: Insufficient
Methodologies Cause Methodological
Problems

I am developing a case that comprises four
claims: There are two AI methodologies; alone,
neither is sufficient; almost nobody is using
both methodologies together; and, in combi-
nation, the methodologies are sufficient. 
My results are unequivocal for the first and
third claims: The two methodologies are real
enough, involving different methodological
choices, and only 8 of 150 papers bridged the
methodologies. This subsection presents evi-
dence that the methodologies are not suffi-
cient, and the next subsection argues that a
composite methodology is sufficient. Along
the way, I show that common methodological
problems—from poor evaluation to absurd
assumptions—arise because AI’s methodolo-
gies are not sufficient.

If the goal of AI research is to develop science
and technology to support the design and
analysis of intelligent computer systems, then
neither the model-centered nor the system-
centered methodology is sufficient alone.
Substitute for “intelligent computer systems”
the name of other designed artifacts—airplanes,
chemical processes, trading systems, and so
on—and one immediately sees that central to
design is the ability to predict and analyze
the behavior of the systems. However, my
survey shows virtually no interaction between
researchers who develop models that are 
in principle predictive and analytic and
researchers who build systems. AI has devel-
oped a remarkable collection of models; the
trouble seems to be that some models are
inadequate for predicting and analyzing the
behavior of AI systems, and others are not
being used in this way.

I can illustrate these points with examples
of research that does effectively merge model
building and system building, research that
relies on models to predict the behavior of
systems under analysis and systems under
design. In their AAAI-90 paper, Tambe and
Rosenbloom rely on two kinds of models to
discuss issues in the design of production
match algorithms. First, the k-search model
describes the complexity of these algorithms.
Tambe and Rosenbloom use this model to

generating hypotheses and predictions.
The paucity of expectations in fields 15–18

is disturbing; so, I asked whether evidence of
expectations could be found in other fields in
table 1. One possibility is field 14, which I
used to register papers that compare perfor-
mance among techniques. I reasoned that the
techniques were not arbitrarily selected; they
were meant to probe or explore expectations
about their relative strengths and weaknesses.
Remarkably, model-centered papers number
20 of the 24 that compare performance, lend-
ing further support to the idea that the models
in model-centered papers are used to generate
expectations; conversely, lacking models,
system-centered papers are generally devoid
of expectations.

In summary, I presented evidence that AI is
dominated by two methodologies. Model-
centered research involves defining, extending,
differentiating and generalizing models, ana-
lyzing and proving theorems about these
models, designing and analyzing algorithms,
and testing algorithms on abstract problems
such as N queens and blocks world. System-
centered research involves designing systems to
perform tasks that are too large and multi-
faceted to be accomplished by a single algo-
rithm. System-centered papers represent
different methodological tactics than model-
centered papers; they are concerned with 
different kinds of examples, tasks, and task
environments than model-centered papers.
System-centered papers are more apt to describe
multiple trials on a task, but they are less
likely to demonstrate performance than
model-centered papers. Systems are less likely
to be analyzed than the algorithms in model-
centered papers, and system-centered papers
present fewer hypotheses, predictions, and
other evidence of expectations than model-
centered papers. In the crudest terms, system-
centered researchers build large systems to
solve realistic problems but without explicit
expectations, analyses, or even demonstra-
tions of the systems’ performance. Model-
centered researchers, however, typically
develop algorithms for simple, abstract prob-
lems but with deeper analysis and expecta-
tions and more demonstrations of success.
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…some models are inadequate for predicting and analyzing…
behavior… others are not used in this way.



show that if productions have a structure
called the unique-attribute formulation, then
a match algorithm requires time linear in the
number of conditions. Thus, they justify the
unique-attribute formulation for real-time
applications. They report, as several others do
in the AAAI-90 proceedings (for example, 633,
640) and elsewhere, that this reduction in com-
plexity is bought at the cost of expressiveness,
the so-called expressiveness-tractability trade-
off (Levesque and Brachman 1985).

Trade-offs are essential to designers because
they can be used to predict—if only compara-
tively and qualitatively—the behavior of
alternative designs. The most useful trade-offs
are operational in the sense of telling the
designer what to change—which knobs to
tweak—to change behavior. The expressive-
ness-tractability trade-off is not operational: It
is too general, and researchers have to figure
out for themselves how to find a compromise
design. Because the model-centered papers are
not concerned with systems (that is, they lack
architectural knobs to tweak), they do not
operationalize the expressiveness-tractability
trade-off (or other trade-offs). In addition,
because these papers do not consider applica-
tions, they have no basis for preferring the
behavior of one design over another. They
say, yes, there is a trade-off, but until we build
a system, there is no way to know what to do
about it; for example:

In obtaining generality, our inheri-
tance formalism also becomes intractable.
We have tried to keep an open mind on
whether it is best to secure a polynomial
inheritance algorithm at all costs, or to 
provide expressive adequacy even if this
requires intractable algorithms… Both
sorts of systems need to be tested. (639)
Tambe and Rosenbloom, however, opera-

tionalized the expressiveness-tractability
trade-off by exploring it in the context of pro-
duction system architectures. This approach
gives them architectural knobs to tweak. They
introduce their second model, a framework in
which to compare particular kinds of restric-
tions on the expressiveness of productions
(for example, restrictions on the number of
values for each attribute). They show that
within this framework, the unique-attribute
formulation is optimal: 

All other formulations are either
combinatoric, so that they violate the
absolute requirement of a polynomial
match bound; or they are more restrictive
than unique-attributes. (696)

Later, they extend the model to incorporate
other aspects of the structure of productions,
in effect expanding the space of designs by

increasing the number of knobs that can be
tweaked. In this space, the unique-attribute
formulation is not guaranteed to be better
than other possible formulations.

Like Tambe and Rosenbloom, Subramanian
and Feldman develop a model to represent a
design trade-off and to show that some designs
are inferior to others:

[We] demonstrate the conditions
under which… to use EBL to learn macro-
rules in recursive domain theories… We
begin with a logical account of the macro-
formation process with a view to under-
standing the following questions: What is
the space of possible macro-rules that can
be learned in a recursive domain theory?…
Under what conditions is using the original
domain theory with the rules properly
ordered, better than forming partial un-
windings of a recursive domain theory?…

The overall message is that for struc-
tural recursive domain theories where we
can find if a rule potentially applies by a
small amount of computation, forming
self-unwindings of recursive rules is
wasteful. The best strategy appears to be
compressing the base case reasoning and
leaving the recursive rules alone. We
proved this using a simple cost model
and validated this by a series of experi-
ments. We also provided the algorithm
R1 for extracting the base case compres-
sions in such a theory. (949)
Such papers are rare in the AAAI-90 pro-

ceedings; only 8 of 150 papers reside in the
intersection of model-centered and system-
centered research. Is this situation bad? I
offered a couple of examples in which the
methodologies are profitably merged; now I
document the costs of exclusively working in
one methodology. This demonstration is
most convincing when the researchers within
each methodology speak for themselves. I
begin with model-centered research.

Models without Systems. One concern
is that the analytic tools of model-centered
research do not cut finely enough, so empiri-
cal research is necessary. Worst-case complexi-
ty analysis—the most common kind of
analysis presented in the AAAI-90 papers—
does not tell us how systems will perform in
practice. Model-centered researchers acknowl-
edge that intractable tasks might in fact be
possible, and approximations or otherwise
weakened models might suffice:

The worst-case complexity of the algo-
rithm is exponential in the size of the for-
mula. However, with an implementation
that uses all possible optimizations, it
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The Yale Shooting Problem and other
canonical [nonmonotonic reasoning]
problems involve a very small number of
axioms to describe their entire world.
These may not be fair problems because
the knowledge involved is so skeletal. It
seems unrealistic to expect a reasoner to
conclude intuitively plausible answers in
the absence of potentially critical infor-
mation. By and large, [nonmonotonic
reasoning] techniques have yet to be
tested on significant real-world–sized
problems. (1086)
Focusing on practical reasoning tasks not

only dispels chimeras but also guides the
search for solutions to formal problems. 
Shastri points out that reasoning might be
intractable, but we do it, so we had better
figure out how:

A generalized notion of inference is
intractable, yet the human ability to per-
form tasks such as natural language
understanding in real time suggests that
we are capable of performing a wide
range of inferences with extreme efficien-
cy. The success of AI critically depends on
resolving [this] paradox. (563)
Indeed, because the space of extensions

and refinements to models is enormous, prac-
tical problems must be used to constrain
research. For example, Hanks contrasts the
general, formal problem of temporal projection
with a specific practical projection problem:

Temporal projection has been stud-
ied extensively in the literature on plan-
ning and acting, but mainly as a formal
problem: one starts with a logic that pur-
ports to capture notions involving time,
action, change and causality, and argues
that the inferences the logic licenses are
the intuitively correct ones. This paper
takes a somewhat different view, arguing
that temporal projection is an interesting
practical problem. We argue that comput-
ing the possible outcomes of a plan, even
if formally well-understood, is computa-
tionally intractable, and thus one must
restrict one’s attention to the “important”
or “significant” outcomes. This is espe-
cially true in domains in which the agent
lacks perfect knowledge, and in which
forces not under the agent’s control can
change the world, in other words, any
interesting domain. (158)
Another reason to merge theoretical and

empirical work is that formal models often
involve simplifying assumptions; so, it is
important to check the predictions of the
models against practical problems:

often gives good results. (166)

This pessimistic [intractability] result
must be taken in perspective. Shieber’s
algorithm works well in practice, and
truly extreme derivational ambiguity is
required to lead it to exponential perfor-
mance. (196)

Of course complete and tractable sub-
sumption algorithms for the whole lan-
guage and for the standard semantics
presented here cannot be expected. In
Allen’s interval calculus… determining
all the consequences of a set of constraints
is NP-hard… That does not render these
formalisms useless. On the one hand it
remains to be seen to what extent
normal cases in practical applications can
be handled even by complete algorithms.
On the other hand, algorithms for com-
puting subsumption in terminological
logics that are incomplete with respect to
standard semantics are increasingly being
characterized as complete with respect to
a weakened semantics. (645)
Another concern is that model-centered

research is driven by formal issues that would
fade like ghosts at dawn in light of natural
problems. One such argument, by Etherington,
Kraus, and Perlis (600), suggests that apparent
paradoxes in nonmonotonic reasoning disap-
pear when we reconsider what nonmonoton-
ic reasoning is intended to do:

We briefly recount four such paradoxes
of nonmonotonic reasoning.… The
observed problems can be viewed as
stemming from a common root—a mis-
apprehension, common to all the
approaches, of the principles underlying
this kind of reasoning.… The directed
nature of reasoning seems to have been
ignored. We contend that the intention
of default reasoning is generally not to
determine the properties of every indi-
vidual in the domain, but rather those of
some particular individual(s) of interest…
In the case of the lottery paradox, by
considering the fate of every ticket, we
face the problem that some ticket must
win—giving rise to numerous preferred
models. If we could reason about only
the small set of tickets we might consider
buying, there would be no problem with
assuming that none of them would win.
(601–602)
Even if one agrees that an abstract problem

is representative of a natural one, solving the
former might not convince us that we can
solve the latter. Brachman raises this concern
in his invited lecture:

…the 
analytic tools

of model-
centered

research do
not cut finely

enough…
empirical

research is
necessary.
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To ensure that the approximations
made in Section 2 [do] not invalidate our
theoretical results, we compared the itera-
tive-broadening approach to convention-
al depth-first search on randomly
generated problems. (219)

To a first approximation, we expect
symptom clustering to achieve exponential
time and space savings over candidate
generation. … However, the exact savings
are difficult to determine, because some
of the candidates are not minimal and
because a candidate may satisfy more
than one symptom clustering. Neverthe-
less, experimental results presented later
lend support to a near-exponential
increase in performance. (360)
Taken together, these excerpts suggest that

in the absence of practical tasks, model-cen-
tered research is prone to several methodolog-
ical problems. It is evidently possible to work
on formal problems that might not arise in
practice, lose track of the purpose of a kind of
reasoning, not exploit practical constraints
when designing solutions to formal problems,
and solve formal problems without checking
one’s assumptions or simplifications in practi-
cal situations. How common are these
pathologies? It is difficult to tell because they
show up when a researcher attempts to use
models in systems, which is extremely rare in
the AAAI-90 papers. However, virtually all
model-centered papers are prone to these
problems. Consider that 76 percent of the
model-centered papers give abstract examples
or no examples; only 33 percent of these
papers describe tested implementations, and
more than half of these implementations are
tested on abstract problems; only 4 model-
centered papers describe techniques embed-
ded in larger software or hardware
environments.

Systems without Models. “Look Ma, no
hands.”—J. McCarthy.
Model-centered research at least produces
models, proofs, theorems, algorithms, and
analyses. It is difficult to say what exclusively
system-centered research produces. In gener-
al, system-centered papers are descriptive
rather than analytic; they describe systems
that do things, such as distributed problem
solving, diagnosis, and design. It is either 
tacitly assumed or vaguely asserted that some-
thing is learned or demonstrated by imple-
menting and testing the systems described in
these papers; for example:

We have implemented the projector
and tested it on fairly complex examples.

We have tested our prover on some
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problems that are available in the theo-
rem-proving literature.
Lacking a clear statement in the system-

centered papers of why one should build 
systems, I turned to Lenat and Feigenbaum’s
(1987) discussion of their empirical inquiry
hypothesis:

Compared to Nature we suffer from a
poverty of the imagination; it is thus
much easier for us to uncover than to
invent. Premature mathematization
keeps Nature’s surprises hidden.… This
attitude leads to our central methodolog-
ical hypothesis, our paradigm for AI

research:
Empirical Inquiry Hypothesis: Intelli-

gence is still so poorly understood that
Nature still holds most of the important
surprises in store for us. So the most prof-
itable way to investigate AI is to embody
our hypotheses in programs, and gather
data by running the programs. The sur-
prises usually suggest revisions that start
the cycle over again. Progress depends on
these experiments being able to falsify
our hypotheses; i.e., these programs must
be capable of behavior not expected by
the experimenter. (p. 1177)
Apparently, the methodology is not being

practiced by system-centered researchers or is
not producing the desired results. The survey
tells us that in general neither model-cen-
tered nor system-centered researchers embody
hypotheses in programs or gather data by
running the programs. In fact, only 25 papers
present hypotheses that could surprise the
experimenter, and only 2 of these are system
centered (the rest present the hypotheses that
a program works or works better than anoth-
er program or present no hypothesis at all).
In addition, if nature is so full of surprises,
why do only 24 papers report negative results
or unexpected results or probe results?

One is tempted to criticize these papers, as
Lenat and Feigenbaum (1987) do, as “using
the computer either (a) as an engineering
workhorse, or (b) as a fancy sort of word pro-
cessor (to help articulate one’s hypothesis),
or, at worst, (c) as a (self-) deceptive device
masquerading as an experiment” (p. 1177). In
other words, the empirical inquiry hypothesis
is okay, but AI researchers are not. However, I
believe there is something inherently wrong
with the empirical inquiry hypothesis and
with system-centered research in general: How
can a system exhibit behavior not expected
by the experimenter if there are no expecta-
tions, and how can there be expectations
without some kind of predictive model of the
system? One needn’t subscribe to formal,



Third, demonstrating that S → B does not
mean that S is a particularly good way to pro-
duce B. Lacking such an assurance, one can
only conclude that S works adequately, but its
design is unjustified. Occasionally, a researcher
will demonstrate that one program works
better than another, but in system-centered
research, the result is rarely explained.

Fourth, demonstrations don’t tell us why a
system works, what environmental condi-
tions it is sensitive to, when it is expected to
fail, or how it is expected to scale up; in short,
demonstrations don’t amount to understand-
ing (Cohen 1989; Cohen and Howe 1990,
1988a, 1988b;  Langley and Drummond
1990). Finally, implementing something once
doesn’t mean we learn enough to repeat the
trick. If all AI systems are “one-off” designs,
and the only thing we learn about each is
that it works, then the science of design of AI

systems will be a long time coming.
These methodological problems have a

common root: System-centered researchers
rarely have models of how their systems are
expected to behave. Designing and analyzing
any complex artifact without models is diffi-
cult: Imagine designing bridges without
models of stress and deflection or hulls with-
out models of fluid flow or drug therapies
without models of metabolism and other
physiological processes. With few exceptions,
described later, system-centered papers in the
AAAI-90 proceedings lack explicit, predictive
models. Given this fact, methodological
problems are unavoidable. Lacking models of
how systems are expected to behave, we will
see no predictions, no hypotheses, no unex-
pected results or negative results, only asser-
tions that a system works. Conversely, models
define behaviors, avoiding McDermott’s
wishful mnemonic problem. Models provide
exogenous standards for evaluating perfor-
mance, bringing objectivity to the claim that
a system works. In addition, models can rep-
resent causal influences on performance,
allowing us to predict performance and test
hypotheses about why systems perform well
or poorly in particular conditions. Models
that serve this purpose—predicting and
explaining performance—are necessary if a
system is to contribute to the science of AI, to

mathematical models, but one also cannot
proceed in the hope of being surprised by
nature. The empirical inquiry hypothesis
should say—but does not—that hypotheses
and expectations are derived from models—
formal or informal—of the programs we
design and build.

I argue later that the lack of models in
system-centered research is the distal cause of
a host of methodological problems. The prox-
imal cause is the reliance on demonstrations
of performance. Many researchers apparently
believe that implementing systems is both
necessary and sufficient to claim progress in
AI. Whereas necessary is debatable, sufficient
is dead wrong. First, although statements of
the form “my system produces such-and-such
behavior” (abbreviated S → B) are sometimes
called existence proofs, nobody ever claimed
that these programs could not exist; no
hypothesis or conjecture is being tested by
implementing them. S → B is not itself a
hypothesis. Neither S → B nor its negation is
practically refutable: Tell any hacker that a
system cannot be made to do something, and
it’s as good as done. In fact, the only empiri-
cal claim made of these systems is that they
exist; all other claims are vague and promis-
sory. For example, “We presented a sketch of
an architecture… that we believe will be of
use in exploring various issues of oppor-
tunism and flexible plan use.” Few systems
merit attention on the basis of their existence
alone.

Second, desired behaviors are loosely speci-
fied (for example, real-time problem solving,
graceful degradation, situated action), so S →
B is less a hypothesis than a definition: B is
the behavior produced by S. The wishful
mnemonic approach to system design and
software engineering, excoriated by McDer-
mott (1981) in 1976, continues unabated
today. Behaviors are what are produced by
the components of systems that carry the
names of behaviors (for example, scheduling
is what the scheduler does). This transference
is exhilarating—we can build anything we
can imagine and call it anything we like. The
downside is that what we can build displaces
what we need to build to produce particular
behavior in a particular environment.
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be more than, in Lenat and Feigenbaum’s
words, “an engineering workhorse,… a fancy
sort of word processor… , or… a (self-) decep-
tive device masquerading as an experiment.”

Models and Systems Together. Given
these arguments, it should not be surprising
that models are common among system-cen-
tered papers that do test hypotheses or
explain behavior. An excellent example is
Etzioni’s explanation in terms of nonrecursive
problem space structure of why PRODIGY/EBL

works:
I formalized the notion of nonrecur-

sive explanations in terms of the problem
space graph (PSG).… PRODIGY/EBL’s nonre-
cursive explanations correspond to nonre-
cursive PSG subgraphs.… I demonstrated
the practical import of this analysis via
two experiments. First, I showed that
PRODIGY/EBLs performance degrades in the
augmented Blocksworld, a problem space
robbed of its nonrecursive PSG subgraphs.
Second, I showed that a program that
extracts nonrecursive explanations direct-
ly from the PSG matches PRODIGY/EBL’s per-
formance on Minton’s problem spaces.
Both experiments lend credence to the
claim that PRODIGY/EBL’s primary source of
power is nonrecursive problem space
structure. (921)
Minton, Johnston, Philips, and Laird (23)

ran experiments to explain why a particular
neural network performs so well on constraint-
satisfaction problems and subsequently incor-
porated the results of this analysis into a
scheduling algorithm for, among other things,
space shuttle payload scheduling problems.
Based on a probabilistic model, they were
able to predict the circumstances under
which the algorithm would perform more or
less well.

Pollack and Ringuette (183) explored a fil-
tering mechanism that “restricts delibera-
tion… to options that are compatible with
the performance of already intended actions.”
In one experiment, they tested the hypothesis
that the filtering mechanism improves perfor-
mance. Unlike most experiments presented in
the AAAI-90 papers, Pollack and Ringuette’s
carefully varied the experimental conditions
and, consequently, revealed a trade-off
between the conditions (in this case, the rate
of change in the environment) and perfor-
mance. This result led to several hypotheses,
each derived from a causal model relating
environmental conditions, architecture struc-
ture, and behavior. Note that Pollack and
Ringuette’s strategy of varying environmental
conditions made sense only because they had

a hypothesis about the relationships between
the conditions and performance; otherwise,
they would just have been aimlessly tweaking
conditions in the hope that nature would
deliver a surprise.

Clearly, models do not have to be quantita-
tive; in the last example, they were qualitative
and causal. Moreover, models can be developed
as post hoc explanations in service of future
design efforts, as in Etzioni’s analysis and the
work of Minton, Johnston, Philips, and Laird,
or they can evolve over a series of experiments
such as Pollack and Ringuette’s. The important
point is that these models support the design
and analysis of AI systems; they are crucial to
answering the questions asked by every
designer: How does it work? When will it
work well and poorly? Will it work in this
environment?

Hypothesis 4: A Sufficient 
Methodology Exists 

Here, I document the evidence in the AAAI-
90 proceedings of a methodology sufficient to
the goals of providing science and technology
to support the design and analysis of AI systems.
I call the methodology modeling, analysis, and
design (MAD). MAD involves seven activities: (1)
assessing environmental factors that affect
behavior; (2) modeling the causal relation-
ships between a system’s design, its environ-
ment, and its behavior; (3) designing or
redesigning a system (or part of a system); (4)
predicting how the system will behave; (5)
running experiments to test the predictions;
(6) explaining unexpected results and modify-
ing models and system design; and (7) gener-
alizing the models to classes of systems,
environments, and behaviors.

None of the AAAI-90 papers report all these
activities, not even the system-centered papers
cited earlier that successfully rely on models.
Thus, it is worth discussing the MAD activities
in some detail, illustrating each with exam-
ples from the AAAI-90 proceedings.

Environment Assessment.  To build a
predictive model of how systems will behave
in a particular environment, we must decide
which aspects of the environment to include
in the model and how accurately they must
be represented. Interestingly, examples of
environment assessment are rare among the
AAAI-90 papers. They include fairly vague
characterizations, such as “Our system…
enables users to learn within the context of
their work on real-world problems” (420), as
well as fairly precise requirements placed by
the environment on the system, such as

Articles

SPRING 1991    27



Minton, Johnston, Philips, and Laird give the
following probability that the min-conflicts
heuristic will make a mistake assigning a
value to a variable:

Pr(mistake) ≤ (k - 1) e-2(pc - d)2/c .
The important point about this model is

that it relates the probability of a behavior
(making mistakes) to measurable characteris-
tics of the problem solver’s search space (the
terms on the right of the inequality). Thus,
Minton, Johnston, Philips, and Laird can pre-
dict behavior and, as they do in their paper,
explain why the min-conflicts heuristic per-
forms so well. Characterizing the search space
was the most common tactic for answering
question 2;  for example, Etzioni (916) and
Subramanian and Feldman (942) focus on the
recursive structure of problem spaces to predict
and explain problem-solving behavior. Unfor-
tunately, many models in the AAAI-90 papers
give only qualitative, worst-case characteriza-
tions of search spaces (that is, intractability
results) that could not be used to answer
either of the two questions. I did not classify
the kinds of models developed in the AAAI-
90 papers, but the paucity of hypotheses and
predictions among them suggests that the
models either were for some reason not being
used to answer questions 1 and 2 or, more
likely, were not intended to answer the ques-
tions. It seems likely that most of the models
described in the AAAI-90 papers cannot sup-
port most MAD activities.

Design and Redesign. Designs, or rather
sketches of designs, abound in AAAI-90 papers,
especially in the system-centered papers.
Most are presented without explanation or
justification—here’s what we are trying to
build, here’s how we did it. The MAD method-
ology aims to justify design decisions with
models. In top-down design, one first derives
models, then designs from the models. Dechter,
for example, clearly intends her models to be
used this way:

A formal treatment of the expressive-
ness gained by hidden units… [is] still
not available. … Our intention is to
investigate formally the role of hidden
units and devise systematic schemes for
designing systems incorporating hidden
units. (556)
Alternatively, models are developed at the

same time as designs. This approach is an
incremental version of MAD in which designs
or parts of designs are implemented to pro-
vide empirical data, which flesh out models,
which become the basis for redesign. For
example, Pollack and Ringuette (183) expect-
ed to find a functional relationship between
the cost and benefit of filtering in different

“when designing our current media coordina-
tor [we] showed that people strongly prefer
sentence breaks that are correlated with pic-
ture breaks” (442). Many papers focus on a
single aspect of environments. Time (for
example, 132, 158) and the recursive struc-
ture of problem spaces (for example, 916,
336, 942) are examples. Only one paper
explicitly intended to study the influences on
design of several, interacting aspects of an
environment—to seek “an improved under-
standing of the relationship between agent
design and environmental factors” (183).

Environment assessment produces assump-
tions about the environment; for example,
one might assume that events are generated
by a Poisson process or that actions are instan-
taneous or that a sentence contains redundant
components. For the purposes of designing
and analyzing systems, these assumptions say
that it probably won’t hurt to simplify the
characterization of the environment.
Assumptions are plentiful in the AAAI-90
papers, especially in the model-centered
papers, but they are assumptions about no
particular environment and, I sometimes sus-
pected, about no plausible environment. This
point is where the rift between model-cen-
tered and system-centered research begins:
The assumptions that underlie models often
preclude their application to the design and
analysis of systems. One way to close the rift
is to ground research in a particular environ-
ment, to make environment assessment a reg-
ular feature of the research. This situation
needn’t preclude generality: We can still build
models for the entire class of environments
of which this one is representative, and we
will be spared basing our models on assump-
tions that cannot hold in any environment.
(Another way to close the rift is to test the
sensitivity of a system to violations of the
assumptions; see Experiments).

Modeling.  Models support all the MAD

activities: design, prediction, experimentation,
explanation, and generalization. To support
these activities, models must answer two
questions: (1) If we change the design of a
system, how will behavior be affected? (2) If
we change environmental conditions, how
will behavior be affected?

Models come in many varieties, from
simple qualitative relationships to fairly pre-
cise functional relationships. Tambe and
Rosenbloom, for example, develop a qualita-
tive model to show that the unique-attribute
design is the best possible within a particular
design space but is inferior in an extended
design space (696). They are among the few
authors who attempt to answer question 1.

We can claim
understanding

when we can
predict… how

changes in
design or…
conditions
will affect
behavior.
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environmental conditions, but they did not
know its form until they ran an experiment.
They discovered that the benefits of filtering
did not warrant its costs in any conditions,
but the ratio of benefit to cost increased with
the rate of environmental change. They knew
that as the run time of tasks increased, so
would the benefit of filtering these tasks and,
they assumed, so would the accuracy of the
results. On the basis of this qualitative model,
they proposed changing their design “to
implement more accurate (and costly) delib-
eration mechanisms in the near future. For
these mechanisms, filtering might be much
more valuable” (188). This paper is one of a
small handful in the AAAI-90 collection that
justify design revisions based on models;
another excellent example is de Kleer’s revi-
sions to the design of truth maintenance sys-
tems to exploit locality in the underlying
structure of some problems (264).

Prediction. Prediction is central to the
MAD methodology: During the design process,
you predict how a system will behave; you
test predictions in experiments; you explain
the disparities between predictions and reality
after the experiments; and when you general-
ize a predictive model, you attempt to pre-
serve as much predictive power as possible,
even as the range of environmental conditions,
design decisions, and behaviors increases. 
Prediction is a criterion for understanding a
system: We can claim understanding when
we can predict with some degree of success
how changes in design or changes in environ-
mental conditions will affect behavior.

Without predictions, it is virtually impossi-
ble to evaluate a system; all one can do is
demonstrate that the system works more or
less well. If you want to know why it works or
when it is likely to break, you need a model;
for example:

If repairing a constraint violation
requires completely revising the current
assignment, then the min-conflicts
heuristic will offer little guidance. This
intuition is partially captured by the [pre-
vious] analysis [see the discussion of
Pr(mistake), above] … which shows how
the effectiveness of the heuristic is
inversely related to the distance to a solu-
tion. (23)
The MAD view of prediction is pragmatic: It

rejects the abstract argument that prediction
is impossible in principle, taking instead the
view that even crude, qualitative, somewhat
inaccurate predictions can serve designers in
practice, especially when incorporated into an
iterative cycle of design, experiments, expla-
nations, and redesign (see Anticipating Argu-

ments against Modeling, Analysis, and
Design).

Experiments.   Experiments have three
main purposes in the MAD methodology: to
test predictions, to probe models, and to dis-
cover behaviors. The first two are directed,
the third is exploratory. In AAAI-90 papers,
few experiments served these purposes;
instead, they demonstrated performance.
Although demonstrations contribute little to
our understanding of our systems, if we are
going to keep building them, we should at
least develop meaningful, efficient measures
of performance. Not surprisingly, this effort
can also profitably be guided by models. For
example, Fayyad and Irani ask:

Suppose one gives a new algorithm
for generating decision trees, how then
can one go about establishing that it is
indeed an improvement? To date, the
answer… has been: Compare the perfor-
mance of the new algorithm with that of
the old algorithm by running both on
many data sets. This is a slow process that
does not necessarily produce conclusive
results. On the other hand, suppose one
were able to prove that given a data set,
Algorithm A will always (or most of the
time) generate a tree that has fewer leaves
than the tree generated by Algorithm B.
Then the results of this paper can be used
to claim that Algorithm A is better than
Algorithm B. (754)

In short, they derive from a model the
result that the number of leaves in a tree is a
proxy for many other performance measures;
so, instead of directly comparing performance,
we can compare leafiness. Most performance
measures in the AAAI-90 papers are not so
carefully justified. Eskey and Zweben point
out that a common performance measure—
run-time speedup—is not a proxy for the
measure that represents their goals as design-
ers, so it should not be adopted without 
careful consideration (908). The correlation
between run-time speedup and the measure
they prefer (see their tables 2 and 3) is only
.26. Researchers who select run time as an
obvious performance measure should not
expect it to correlate with anything they 
care about.

Experiment designs are informed by models.
Models describe how behaviors are affected
by factors in the environment and system
design parameters, and experiments test these
causal hypotheses. Models tell us where to
look for results. For example, although the
following excerpt did not herald an experi-
ment, it does suggest where to look for an
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a workshop on benchmarks and metrics and
is instituting benchmarks in some of its
research programs. I believe that benchmarks
and common environments address a symp-
tom—the lack of system evaluation—not its
cause and, worse, divert attention from the
cause. The principal reason that we don’t run
experiments in AI is that we don’t have
hypotheses to test. Instituting benchmarks
won’t increase the number of hypotheses,
only the number of performance demonstra-
tions (Cohen and Howe 1990). I state the case
too strongly—benchmarks can certainly pro-
vide common evaluation criteria and might
provide the impetus for researchers to under-
stand why their systems perform poorly,1 but
we shouldn’t think that instituting bench-
marks will fix AI’s methodological problems,
particularly the lack of predictions and
hypotheses.

We also shouldn’t think that common
experimental environments will provide us
that most elusive of scientific criteria, replica-
bility. It is claimed that if we all perform our
experiments in the same laboratory (that is,
the same software testbed) then the results
will be comparable, replicable, and cumula-
tive.2 Like the call for benchmarks, this idea
isn’t bad, but it diverts attention from a real
methodological problem. Replication in other
fields is not the replication of laboratories but
the replication of results across laboratories.
The strongest results are those that hold up in
many different environments. If we say that
AI systems are so complex that we cannot
hope to replicate results across systems, so for
the sake of comparability and cumulativeness
we should work in a single, common system,
then we are by this device diverting attention
from a fundamental problem: We understand
our techniques so poorly that we cannot say
which aspects of their behavior should be
replicable in different systems and environ-
ments. The solution is to build models that
predict behavior; these predictions should
then be replicable in all systems and environ-
ments that are described by the models.

In sum, experimental work without models
is only half a loaf. We can fiddle with the
parameters of our systems to see what happens;
we can demonstrate performance on bench-

effect—in borderline situations—if an experi-
ment is run:

Surprisingly,… there might exist a
semi-cooperative deal that dominates all
cooperative deals and does not achieve
both agents’ goals. It turns out this is a
borderline situation. (104)
This much is recognizable as the conven-

tional hypothesis-testing view of experiments:
A model makes predictions about how
changes in the environment or changes in
design will affect behavior, and an experiment
tests the predictions. However, pick up a typi-
cal text on experiment design and analysis,
and you are unlikely to find any discussion of
a subtler, more important relationship
between models and experiments: Just as
experiment designs are informed by models,
so, too, are models informed by experiment
results. Sometimes, results contradict predic-
tions, but often they flesh them out, provid-
ing data to replace rough, qualitative models
with functional, quantitative ones. This itera-
tive, exploratory development of models is
described in a recent paper by Langley and
Drummond (1990), who see it as the future
not only of individual research projects but of
the entire field of experimental AI:

In the initial stages, researchers
should be satisfied with qualitative regu-
larities that show one method as better
than another in certain conditions, or
that show one environmental factor as
more devastating… than another. …
Later stages… should move beyond quali-
tative conclusions, using experimental
studies to direct the search for quantita-
tive laws that can actually predict perfor-
mance in unobserved situations. In the
longer term, results of this sort should
lead to theoretical analyses that explain
results at a deeper level, using average-
case methods rather than worst-case
assumptions. (p. 113)
Langley and Drummond’s paper raises many

issues in experiment design, including the use
of benchmarks. Lately, the calls for bench-
marks and common experimental environ-
ments have increased in frequency and
intensity; for example, the Defense Advanced
Research Projects Agency recently sponsored
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marks; we can compare techniques within a
common experimental environment. All these
techniques are valuable exploratory methods.
All are preferable to unsubstantiated claims of
success. However, none is half as convincing
as a test of a prediction derived from a model
and replicated across environments.

Explanation. By explanation, I mean
accounting for data; for example, Minton,
Johnston, Philips, and Laird account for the
performance of the min-conflicts heuristic
with the model previously described. Howev-
er, one might also have to explain why data
do not support predictions. For example,
Hirschberg discovered problems with her
model of which features of speech predict
stress (accent) assignment: “Even from such
slim data, it appears that the simple mapping
between closed-class and deaccentuation
employed in most text-to-speech systems
must be modified” (955). In Hirschberg’s case
and the natural sciences in general, explana-
tions of incorrect predictions lead to revisions
of models. However, the behaviors of AI sys-
tems are artificial phenomena, so if models
make incorrect predictions about behaviors,
should we revise the models or the systems?

This question recently arose in our PHOENIX

system (Cohen 1991; Cohen et al. 1989;
Howe, Hart, and Cohen 1990). On the basis
of a model, it was predicted that problems
would most efficiently be solved in a particu-
lar order; however, the prediction failed: 
Performance was inefficient in one of four
experimental conditions. The model included
terms that represented the problem-solving
environment, and it made some assumptions
about the problem-solving architecture. To
explain the results, we first showed that the
model correctly characterized the environ-
ment and then attributed the failed predic-
tion to one of these assumptions. This
approach raised an interesting question: If a
model predicts that given an assumption
about the design of a system, performance
should be better than it actually is in experi-
ments, then should we modify the model or
redesign the system to conform to the
assumption? Modifying the model serves no
purpose besides formalizing a bad design; the
right answer is to modify the design to bring
it in line with the model.

Generalization. Whenever we predict the
behavior of one design in one environment,
we should ideally be predicting similar behav-
iors for similar designs in related environments.
In other words, models should generalize over
designs, environmental conditions, and

behaviors. Model-centered and system-cen-
tered researchers have different views of gen-
erality: The former has a general model, the
latter has a specific system, and neither
moves an inch toward the other. The laurels
would seem to go to the model-centered
researcher, except that the innovations of the
system-centered researcher can generate
dozens or hundreds of imitations, reimple-
mentations, and improvements. Eventually,
someone writes a paper that states generally
and more or less formally what all these systems
do, for example, Clancey’s (1985) heuristic
classification paper, Mitchell’s (1981) charac-
terization of generalization as search, and
Korf’s (1987) paper on planning as search.
The trouble is that such papers are rare.

The activities just discussed can be combined
to yield several styles of AI research. I men-
tioned hypothesis testing, where predictions
are generated from models and empirically
tested in systems. I also mentioned explorato-
ry model development, where empirical work
is intended to first suggest and then refine
models (Langley and Drummond 1990).
Sometimes, the explanation of behavior in
terms of models is the principal goal. Some-
times, the goal is to design a system or a com-
ponent of a system given models of how the
artifact will behave in a particular environment.

Long-term, large-scale projects will empha-
size different MAD activities at different times.
For example, in the PHOENIX project, it was
clearly impossible to design in a top-down
fashion—from nonexistent models—the
architecture of PHOENIX agents. (These agents
are embedded in simulated bulldozers and
firebosses and plan how to fight simulated
forest fires [Cohen et al. 1989]. Instead,
researchers differentiated fixed design deci-
sions, which will not be reviewed anytime
soon; reviewable decisions, which are reviewed
after they are implemented, and models are
developed to support the analysis; and justifi-
able decisions, which are based in models
before being implemented. This division
enabled us to get PHOENIX up and running,
providing us with an empirical environment
in which to iteratively develop models, make
predictions, review design decisions in light
of new models, propose new design decisions,
and explain performance. To date, most of
the modeling effort has been aimed at analyz-
ing reviewable design decisions; for example,
although PHOENIX agents currently work on
multiple fires simultaneously, we recently
developed a model that suggests this
approach is not the best use of resources. If
the model holds up empirically, then we will
revise the design decision. In sum, although
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“Predictive Models Lead to 
Predictable, Boring Systems”
Another kind of argument is, Just how intelli-
gent is a predictable AI system? How do we
reconcile the desire for predictability with the
desire to be surprised by an AI system? These
questions raise some fundamental issues
about the nature of novel, creative reasoning,
questions that I cannot address here for want
of space and expertise.3 However, I can say
that most of what AI seems to mean by cre-
ativity involves relatively small variations on
a theme; new themes are infrequently intro-
duced. Nothing in MAD precludes designing a
system that is predicted to produce novel
variations on a theme. No individual varia-
tion would be predictable, but the system
would not stray from the theme.

“Premature Mathematization Keeps
Nature’s Surprises Hidden”
Another possible argument against MAD is
that modeling discourages exploration or, as
Lenat and Feigenbaum (1987) put it, “Prema-
ture mathematization keeps Nature’s surprises
hidden” (p. 1177). I know of no area of inquiry
that has been retarded by efforts to build
formal models of nature, but obviously, one’s
understanding of nature—expressed formally
or informally—is not advanced by mathema-
tization that has only the most tenuous con-
nection to nature. Some of Brachman’s
comments can be interpreted as voicing this
concern:

More theorems and proofs than ever
have appeared in recent KR [knowledge 
representation] papers and the body of
mathematics in support of KR has grown 
dramatically. A formal semantics is now
an obligatory accompaniment of the
description of a novel KR system. The
tremendous upsurge in KR theory has
seemingly come at the expense of experi-
mentation in the field.… But the pendu-
lum may have swung too far,
inadvertently causing a rift between the
formalists and those concerned with
applications, and causing less and less of
the KR literature to have any impact on
the rest of AI and on practice. (1085)

the MAD activities get mixed and matched at
different stages of a research project, the con-
stant theme is a commitment to develop or
adapt models to support the analysis and
design of systems.

Anticipating Arguments Against
Modeling, Analysis, and Design

Here, I consider five arguments against the
MAD methodology and, more generally,
against any attempt to base the design and
analysis of AI systems in models. I do not
believe these arguments; I present them to
refute them.

“Predictive Models of AI Systems Are
Unachievable”
As we work with more complex environments
and with architectures that produce complex
behaviors from interactions of simpler behav-
iors, the goal of developing models to predict
behavior seems increasingly remote. Some
researchers claim that behavior is, in principle,
unpredictable, so the only way to design sys-
tems is as nature does, by mutation and selec-
tion (for example, Langton [1989]). A related
argument is that AI systems are too complex
to be modeled in their entirety. In fact, com-
plex systems can be modeled, and behavior
can be predicted, if not accurately, at least
accurately enough to inform design. Particu-
larly useful, as I noted earlier, are models of
design trade-offs. These models need not be
accurate, they might only be qualitative, but
they help designers navigate the space of
designs. Moreover, once a prototype design is
implemented, even qualitative design trade-
offs can quickly be enhanced by empirical
data. It is also not necessary to model an
entire system to predict its performance. By
modeling a critical component of a system—a
bottleneck, perhaps—one can predict the
gross behavior of an entire system. Thus, the
question is not whether predicting behavior
is possible in principle or whether it is possi-
ble to model an entire, complex system but
whether predicting the behavior of important
components of systems is useful in practice.
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There should be no possibility in MAD of the
mathematical tail wagging the system design-
er’s dog. The goal of MAD is to design and ana-
lyze systems with the help of models and to
develop new models when the available ones
are not sufficient for the purposes of system
design and analysis. Models serve design and
analysis. The methodology simply does not
endorse modeling for its own sake.

The Synchronization Problem
Another potential argument against MAD is an
apparent synchronization problem: System-
centered researchers often find that model-
centered researchers provide formal accounts
of behaviors that the system-centered
researchers have assumed all along. Proba-
bilistic accounts of certainty factors came
along a decade after MYCIN (Heckerman 1986);
semantics for STRIPS operators were developed
later yet (Lifschitz 1987). The synchronization
problem is that system-centered researchers
don’t get models when they need them, which
is during the design and analysis of systems. I
believe the problem is real, but I believe that
MAD alleviates it by encouraging the simulta-
neous development of models and systems.

“MAD Misinterprets the Purpose of AI”

Finally, MAD might be rejected on the grounds
it misinterprets the purpose of AI. Matt Gins-
berg recently put it this way: “You think AI

has to do with designing and analyzing systems;
I think AI is like medieval chemistry: Design
anything you like to try to turn lead into
gold, but you won’t succeed until you invent
nuclear physics. AI theorists are trying to
invent nuclear physics. Systems are premature.”

Paring away the challenges to any given
aspect of this analogy, one is left with a basic
dispute about how to proceed in AI. Model-
centered researchers say that systems are pre-
mature, lacking formal models of intelligence.
System-centered researchers say models are
superfluous because the goals of AI are satis-
fied if we can build systems that work, which
can be accomplished without models. Unless
we are willing to dismiss one group or the
other as wrong about the proper goals and
methods of AI, we have to believe both. We
have to believe that the goals of AI are to
build formal models of intelligence and to
build intelligent systems. The only question is
whether these goals should be the activities of
different cadres of researchers, as they are
now, or whether the activities should some-
how be merged. The symbiosis between the
activities is obvious: With models, we can
design and analyze systems, predict their per-
formance, explain deviations from perfor-

mance, and so on; with systems, we can test
the assumptions of models, focus on models
for tasks that actually exist, revise the models
in response to empirical data, and so on. MAD

doesn’t misinterpret the goals of AI; it pro-
vides a necessary framework in which to
simultaneously achieve them.

An Explanation of the 
Fields in Table 1

Fields 3 and 4: Define, Extend, 
Generalize, Differentiate Semantics 
for Models and Theorems and 
Proofs for the Model
Many papers focus on models of reasoning.
The word model is used many ways in AI, but
I intend it to mean an abstract, typically
formal description of behavior or environ-
mental factors or design decisions that affect
behavior. The purpose of building a model is
to analyze its properties, assuming (often
implicitly) that they carry over to systems
that implement the models; for example:

An important area of research is to
devise models of introspective reasoning
that take into account resource limita-
tions. Under the view that a KB is com-
pletely characterized by the set of beliefs
it represents… it seems natural to model
KBs in terms of belief. … The best under-
stood models of belief are based on possi-
ble-world semantics. … Unfortunately,
[these models assume] a property often
referred to as logical omniscience, which
renders reasoning undecidable in first-
order KBs. An important problem then is
to find models of belief with better com-
putational properties. (531)
Clearly, the purpose here is not to build a

knowledge base or a facility for introspective
reasoning about a knowledge base but, rather,
to define a model of introspective reasoning
with desirable properties, a model that can
then serve as a design or specification for
implementations of introspective reasoning.

In addition to defining models, papers extend,
generalize, differentiate, and provide seman-
tics for models. An example of each follows:

Extension: “We… extend the notion
of constraint satisfaction problems to
include constraints about the variables
considered in each solution. … By
expressing conditions under which vari-
ables are and are not active, standard CSP

methods can be extended to make infer-
ences about variable activity as well as
their possible value assignments.” (25)

Generalization: “An interesting
result of our analysis is the discovery of a
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they use the word algorithm, they typically
mean the flow of control in the system; for
example:

The basic QPC algorithm consists of
four steps:

1. Assemble a view-process structure 
from a description of the scenario.

2. Apply the closed-world assumption
and build the QDE.

3. Form an initial state.
4. Simulate using QSIM. (366)

Analyses of systems were divided into three
classes: complexity or other formal analysis,
informal, and none. As one might expect,
complexity analyses focused on the behaviors
of particular components of a system; for
example:

Building the space of interactions,
identifying a andidate path, elaborating
structure, and testing consistency are at
worst quadratic in the number of indi-
viduals and classes introduced. We are
working on proving whether Ibis gener-
ates all candidates; the other steps are
complete. … The verification step is NP-
hard. (356)
Of the 45 papers that present systems, 7

offer complexity analyses or other formal
analyses. Informal analyses include discus-
sions of design decisions, comparisons with
related architectures, and so on. A good
example is Redmond’s analysis of the length
of a “snippet” in his CELIA system (308).

Fields 9, 10, and 11: Example Type,
Task Type, Task Environment

Three fields dealt with the context in which
ideas are presented and tested. Most of the
papers (133, or 89 percent) present at least 1
example of a task (field 9), but only 63 of the
papers (42 percent) indicate that their tech-
niques had been exercised on a task—on mul-
tiple trials beyond a single example. Tasks
were classified by type (field 10), task envi-
ronments by whether they were embedded
(field 11). Examples and task types were clas-
sified as natural, synthetic, and abstract. To
be classified as performing a natural task, a
program had to tackle a problem solved by
humans or animals given the same or similar
data; for example:

What we would really like to know
about a function-finding program is not
its record of successes on artificial prob-
lems chosen by the programmer, but its
likelihood of success on a new problem
generated in a prespecified environment
and involving real scientific data. …

subtask that is at the core of generating
explanations, and is also at the core of
generating extensions in Reiter’s default
logic. Moreover, this is the subtask that
accounts for the computational difficulty
of both forms of reasoning.” (343) 

Differentiation: “While belief func-
tions have an attractive mathematical
theory and many intuitively appealing
properties, there has been a constant bar-
rage of criticism directed against them.
...We argue that all these problems stem
from a confounding of two different
views of belief functions.” (112)

Semantics: “Their scheme has one
immediate drawback; at the present
moment the costs have no adequate
semantics. … We will provide a proba-
bilistic semantics for cost-based abduc-
tion.” (106)
Many papers present theorems and proofs

that derived from models. Sometimes these
analyses pertained to soundness, complete-
ness, and decidability. Often, they pertained
to complexity; for example, one paper (550)
presents complexity analyses of eight classes
of closed-world reasoning.

Fields 5 and 6: Present Algorithm(s)
and Analyze Algorithms

More than half of the papers in the AAAI-90
proceedings present algorithms, and most of
these analyze their algorithms in some manner.
Complexity analyses predominate, but other
kinds of formal analyses (for example, sound-
ness and completeness results) are common.

Fields 7 and 8: Present System and
Analyze Aspect(s) of System

Several criteria were used to decide that a
paper presents a system or an architecture.
Systems and architectures are composite,
with different components responsible for
different functions. Systems solve problems
that system designers believe are too large to
be solved by a single algorithm. Frequently,
system papers discuss the organization and
interactions among the system’s components.
Although system papers often discuss just
one component in detail, the discussion usu-
ally includes a brief description of the system
to set the context, and it was usually clear
that the focal component was responsible for
only some of the reasoning necessary to a
task. System papers rarely describe underlying
models, theorems, or algorithms. Even when
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When analyzing bivariate data sets…
published in the Physical Review in the
first quarter of this century, E* has
approximately a 30 percent chance of
giving the same answer as the reporting
scientist. (832)

Our system runs a complete loop
in which experiments are designed by
FAHRENHEIT, performed under the control
of [a] PC in the electrochemical cell, [and]
the experimental results are sent to…
FAHRENHEIT [which] uses them to build a
theory. Human interference is reduced to
sample preparation and occasional assis-
tance. (891)
The latter excerpt describes an embedded

task environment, one in which the principal
innovations of a paper are applied in the con-
text of an architecture or other software sys-
tems or in a physical environment. The
former excerpt describes an algorithm, E*,
that apparently runs in batch mode and has
no significant interactions with its task envi-
ronment. FAHRENHEIT and robot agents (for
example, 796, 854) are embedded in a physi-
cal task environment, but most embedded
task environments are software environments.

Examples and tasks were classified as syn-
thetic if they were synthetic analogs of natu-
ral tasks; for example:

The Tileworld can be viewed as a
rough abstraction of the Robot Delivery
Domain, in which a mobile robot roams
the halls of an office delivering messages
and objects in response to human
requests. We have been able to draw a
fairly close correspondence between the
two domains. (184)
Synthetic tasks involve simulated environ-

ments (for example, 59, 86, 183), some plan-
ning tasks (for example, 152, 158, 1016,
1030), distributed problem solving (78, 86),
and some qualitative physics tasks (for exam-
ple, 401, 407).

Synthetic tasks usually raise several research
issues, but abstract tasks are designed to be
the simplest possible manifestation of a single
research issue. John Seeley Brown called such
problems paradigmatic in his address at the
Eighth International Joint Conference on
Artificial Intelligence in 1983 and distin-
guished them from toy problems, which are
similarly minimalist but are not distillations
of important research issues. For example, the
N queens problem is a paradigmatic constraint-
satisfaction problem, Sussman’s anomaly is
the paradigmatic subgoal-interaction prob-
lem, ostriches and elephants provide the
paradigmatic default inheritance problem,
and so on. The abstract problems addressed in

the AAAI-90 papers include N queens (for
example, 17, 227); constraint networks (for
example, 10, 40, 46); networks with and with-
out hidden variables (for example, 556); sub-
goal-interaction problems (166); problems
involving multiple agents, such as the prison-
er’s dilemma, the convoy problem (94), and
block-stacking problems (100) (see (538) for
many others); a wide variety of problems of
nonmonotonic reasoning, including inheri-
tance problems (for example, 627, 633); quali-
fication problems such as the potato in the
tailpipe (158), the Yale shooting problem (for
example, 145, 524, 615), and other problems
of persistence and various paradoxes of non-
monotonic reasoning (600); a variety of
simple robot problems such as the robot
recharging problem (151); problems involv-
ing artificial, large search spaces (for example,
216); problems involving matching (for
example, 685, 693, 701); and a wide variety of
paradigmatic classification problems for
learning systems, such as XOR (for example,
789), LED display (for example, 762, 834), cups
(for example, 815, 861), and wins in tic-tac-
toe (for example, 803, 882).

Field 12: Assess Performance
AI is unlike experimental sciences that provide
editorial guidance and university courses in
experiment design and analysis. This state-
ment might explain why some papers among
the 160 accepted for AAAI-90 assess perfor-
mance much more convincingly than others.
These papers are not the standard for assessing
performance in this survey, in part because
clean experimental work is easiest when eval-
uating simple artifacts such as individual
algorithms, and I didn’t want to penalize
efforts to evaluate complicated systems, and
in part because I wanted to conservatively err,
crediting too many papers with assessing per-
formance instead of too few. Thus, I adopted
a weak criterion: If a paper reported a study in
which at least one performance measure was
assessed over a reasonably large sample of
problems, then it was credited with assessing
performance. “Reasonably large” is open to
interpretation, but for most tasks, a single
example did not suffice (however, see (796)).
A single example usually does not explore the
range of initial conditions or parameteriza-
tions that might affect performance; for
example, the following so-called experi-
ment—a single example presented without a
hint of others—is inconclusive:

Using the guaranteed planning strat-
egy… (the) query is solved… in 4.75 sec-
onds. Using the approximate planning
strategy… the same query is solvable in
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plestone’s paper on robotic assembly (1038).
Because they have an underlying mathemati-
cal model of their task, they were able to
select examples that demonstrate coverage
with respect to the model.

There are at least two alternative criteria for
demonstrating coverage: (1) weak coverage, the
ability to solve instances of some problems in
a space of types of problems, and (2) strong
coverage, the ability to solve instances of all
problems in a space of types of problems.
Weak and strong coverage are not distin-
guished in table 1 because there are no exam-
ples of strong coverage among the AAAI-90
papers. However, one paper clearly has strong
coverage as a goal (59). It identifies six basic
operations in knowledge processing: inheri-
tance, recognition, classification, unification,
probabilistic reasoning, and learning. Then, it
presents a knowledge processing architecture
that it evaluates with problems that require
inheritance, recognition, and classification.

Field 14: Compare Performance

Although a significant number of papers
included comparisons of performance, the
purpose of these comparisons was not always
clear. When the purpose was clearly to
demonstrate that “my technique is better
than yours”, the paper was classified as an
assessment of performance (field 12). When
the purpose was to study the relative
strengths and weaknesses of two or more
techniques, the paper was classified as a com-
parison of performance; for example:

The goal of our experiments is to
draw an overall picture as to the relative
strengths of back propagation and genet-
ic algorithms for neural network training,
and to evaluate the speed of convergence
of both methods.… Convergence of genet-
ic algorithm based neural network train-
ing was so slow that it was consistently
outperformed by quickprop. Varying
parameters… made only limited contri-
butions in reversing the results. (789)

Field 15: Predictions, Hypotheses

Some papers offer predictions or hypotheses;
for example:

Hypothesis 1: Only when we have a
priori knowledge about problem distribu-
tion is it effective to learn macro rules.…
Hypothesis 2: As we increase the degree
of nonlinearity of the recursive rules,
there is exponential degradation in per-
formance upon addition of macro rules.
(947)

0.17 seconds. Although (this) plan is not
correct, it is plausible. Note also that the
first two actions it prescribes are the same
as those of the correct plan: the approxi-
mate plan is an excellent guide to inter-
mediate action. 
The multiple example criterion excluded

some papers in knowledge representation
that offer a single example of a solution to,
say, the Yale shooting problem. It is tempting
to believe that a solution to such a paradig-
matic problem is also a solution to countless
other problems in this class. However,
because many of the authors of these papers
do not believe this statement themselves (for
example, 1082) and acknowledge the need for
empirical work specifically where the expres-
sivity-tractability trade-off is concerned (for
example, 531, 563, 633), I did not credit
knowledge representation papers with assess-
ing performance given a single example.

In general, authors do not describe the
structure of their studies (just as they rarely
describe the purpose of studies beyond saying
the purpose is to test their ideas). I often had
trouble determining the number and degree
of the coverage of tests in the study, but only
in the most extreme cases, where authors
assert success without providing any details
of the evaluation study, did I decline to credit
them with assessing performance; for example:

Our evaluation using professional
and amateur designers showed that con-
textualized learning can be supported by
[our system].

An active critiquing strategy has
been chosen and has proved to be much
more effective. 

Field 13: Assess Coverage

Another purpose of an evaluation study is to
assess coverage, that is, the applicability of a
technique (algorithm, architecture, and so
on) to a range of problems. In general,
authors do not discuss their own criteria for
coverage. They demonstrate techniques on
problems that are superficially different, but
they do not discuss whether and how they
are different. Examples include an operating
system and a word processing system (310);
simple liquid flow, boiling, and a spring-block
oscillator (380); and the heart and a steam
engine (413). In fact, these authors do not
explicitly claim coverage, so it is merely 
curious that they do not describe why they
selected these particular suites of problems.
One positive example of coverage that
involves only three examples is Liu and Pop-
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The fact that filtering is less detri-
mental in the faster environment leads us
to hypothesize that there may be a break-
even point at even faster speeds, above
which filtering is useful. (188)
Sometimes papers present counterintuitive

predictions; for example:
Our account predicts (perhaps coun-

terintuitively) that an agent will persist in
trying to achieve a goal even if he hap-
pens to believe the other agent is in the
process of informing him of why he had
to give it up. (99)

One might expect that in such a situ-
ation, even if the agents use the Unified
Negotiation Protocol, they will agree on a
semi-cooperative deal that is equivalent
to the cooperative deal. … Surprisingly,
this is not the case. (104)
Hypotheses and predictions indicate that

the researcher has some reason, besides
demonstrating performance, to implement
and test an idea. For example, the first two
excerpts in this subsection hypothesize trade-
offs that are to be empirically examined. The
third excerpt predicts (in a hypothetico-
deductive manner) a behavior that, although
counterintuitive, follows logically from a
theory; the fourth also juxtaposes intuition
and theory. Last, you might recall excerpts
presented earlier that point out that predic-
tions from a theory depend on the assump-
tions that underlie the theory, so they must
empirically be checked.

These and related reasons for empirical
work were sufficient to classify a paper as pre-
senting hypotheses or predictions. What did
not count, even when it was called a hypoth-
esis, was the simple assertion that a technique
(algorithm, architecture, and so on) solves a
problem. This assertion is made implicitly or
explicitly by almost all the papers. Descrip-
tions of experiments also did not imply
hypotheses if they served only to demon-
strate an idea (for example, “The goal of the
experiment is to make Genghis learn to walk
forward” (799)). Worst-case complexity results
did not count as predictions. As noted earlier,
technically, they are predictions, but they pre-
dict nothing about average-case performance.

Only 25 papers contain anything that, by
these criteria, could be called hypotheses or
predictions. The others are vague about their
reasons for empirical work. The following
quotes are typical: “We implemented the
above search techniques for parallel search…
and studied their performance” and “To eval-
uate the effectiveness of our approach, we
implemented a simulation environment and
solved the… problem.” 

Field 16: Probe Results
Probing refers to a variety of activities, includ-
ing explaining or strengthening experimental
results (possibly with the aid of follow-up
experiments), explaining results derived by
other researchers, and performing exploratory
experiments to find out more about a func-
tional relationship thought to underlie data.
In general, if a paper goes beyond its central
results or explains someone else’s results, it
was credited with probing results. For exam-
ple, the following excerpt describes how a
follow-up is expected to explain the success of
an earlier experiment:

If evaluation and not search is the
key to successful function-finding with
real data, it ought to be possible to
improve performance by developing
more sophisticated evaluation criteria.
(828)
The following excerpt is from a paper that

develops a mathematical theory that explains
why another researcher’s technique works:

Warren has proposed a heuristic for
ordering the conjuncts in a query: rank
the literals according to increased cost. …
It is not clear why his cost measure, and
its use in this way, is appropriate. Howev-
er, it becomes clear when the relation to
our analysis is established. (38)

Field 17: Present Unexpected Results
Few papers discuss their results with any
sense of surprise or discovery. Here are four
that did:

So far we have discovered two kinds
of difficulties in building math model
libraries. First, we found ourselves using
ever more sophisticated qualitative
models in order to provide enough func-
tional dependencies to yield reasonable
numerical models. (385)

An interesting result of our analysis is
the discovery of a subtask that is at the
core of generating explanations, and is
also at the core of generating explana-
tions in Reiter’s default logic. (343)

These results are much better than
we expected, especially when compared
to… (what) we had thought was an opti-
mistic measure. (691)

Contrary to intuition, the random
training sets performed as well or better
than the most-on-point and best-case
training sets. (845)

Field 18: Present Negative Results
Negative results are typically things that were
expected to work but did not. Examples
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figure 3, and the original distribution of
papers into these sets is shown in row 0 of
figure 3. Consider one of these sets, say, the
43 papers in MODELS ∩ ALGS. The remain-
ing rows in figure 3 show how these papers
are distributed over methodological tactics
represented by fields 9–18 in table 1. For
example, the rows labeled A in figure 3 corre-
spond to field 9 in table 1, which asks what
kind of example was presented in a paper.
The 43 papers in MODELS ∩ ALGS are distribut-
ed as follows: Four papers give natural exam-
ples, 4 give synthetic examples, 29 give abstract
examples, and 6 give no examples at all.

Now, although the 43 papers in MODELS ∩
ALGS are predominantly concerned with
abstract examples, the 37 papers in SYSTEMS

include Hirschberg’s test of an algorithm for
assigning intonation to speech (previously
discussed) and the following excerpt: “It is
also probably worthwhile to report on search
heuristics that we tried, but that didn’t
reduce the time needed to find a solution to
the puzzle” (214). Evidently, most researchers
were even less enthusiastic: Negative results
appear in only four papers.

Statistical Analyses
The following analyses support the conclu-
sions in section Hypothesis 1: Two Method-
ologies. Recall that papers were classified by
fields 3–8 of table 1 into seven sets, shown in
Figure 2. These sets are shown at the top of
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algsmodels

systems

model–centered hybrid system-
centered

Distribution by

0 Fields 3–8 25 43 36 1 4 3 37

Field 9:

A Natural 3 4 9 0 0 1 22

A Synthetic 1 4 4 1 2 1 11

A Abstract 15 29 20 0 2 0 4

A None 6 6 3 0 0 1 0

Field 10:

B Natural 0 3 10 0 0 1 18

B Synthetic 0 0 2 1 1 2 3

B Abstract 0 7 12 0 1 0 1

B None 25 33 12 0 2 0 15

Field 11:

C Embedded 0 1 3 1 1 3 19

C Not Embedded 0 9 21 0 1 0 3

C None 25 33 12 0 2 0 15

Fields 12-14:

D Demo 0 7 24 0 2 3 8

D No Demo 25 36 12 1 2 0 29

Fields 15-18:

E Expectations 2 10 11 1 3 1 4

E No Expectations 23 33 25 0 1 2 33

Figure 3. Distributions of Papers by Classes and Fields.



(the last column in figure 3) are concerned
with natural and synthetic examples. The
question is whether this result could have
arisen by chance or whether it reflects differ-
ent methodological tactics. There are two
ways to answer the question. One is to con-
sider the entire distribution in the rows
labeled A in figure 3, that is, 4 types of exam-
ples (including none) crossed with 7 sets of
papers. Intuitively, the distribution seems
unlikely to have occurred by chance; for
example, I do not expect chance to distribute
15 of the 25 papers in MODELS into the
abstract category and 22 of the 37 papers in
SYSTEMS into the natural category. A chi-
square test captures this intuition and tells
whether the entire distribution (not only the
anomalous examples that I pick out) could
have arisen by chance. Given the contingen-
cy table in the rows labeled A in figure 3, a
chi-square statistic (χ2) and its probability (p)
are easily calculated. In this case, χ2(18) =
67.9 and p < .0001, which means that the
methodological choice of an example is not
independent of which class (for example,
MODELS or MODELS ∩ ALGS) a paper comes
from; if the choice was independent of class,
then the distribution would be expected by
chance less than 1 time in 10,000.

The other way to see whether the distribu-
tions in figure 3 reflect different methodologi-
cal tactics is to combine the original 7 sets of
papers into 3: model centered, system centered,
and hybrid. As shown at the top of figure 3,
my scheme is papers in MODELS, ALGS, and
MODELS ∩ ALGS are model centered (104
total); papers in SYSTEMS are system centered
(37 total); and papers in MODELS ∩ ALGS ∩
SYSTEMS, MODELS ∩ SYSTEMS, and ALGS ∩
SYSTEMS are hybrid (8 total).

One justification for this approach is that
the papers I call model centered cannot be
differentiated by the kinds of examples they
contain. To illustrate this point, I construct a
contingency table from the first three columns
of data in the rows labeled A in figure 3. This
distribution, shown in figure 4, does not
permit us to reject the hypothesis that exam-
ple type is statistically independent of the

classification of a paper as a member of
MODELS, ALGS, or MODELS ∩ ALGS (χ2(6) =
7.26, p > .29).

With this justification for the class of model-
centered papers, the other classes naturally
follow: System-centered papers are those in
SYSTEMS, and the remaining eight, hybrid
papers are those in the intersection of the
model-centered and system-centered classes.

Now we can run chi-square tests as before,
except with three classes instead of seven.
New contingency tables are easily derived by
summing over columns; for example, figure 5
shows the new table for the rows labeled A in
figure 3. This distribution is unlikely to have
arisen by chance (χ2(6) = 55.5, p < .0001),
which means that model-centered and
system-centered papers offered significantly
different types of examples.

Similar analyses were run on fields 10 and
11, with the results reported in Hypothesis 1:
Two Methodologies: Model-centered and
system-centered papers focus on significantly
different kinds of tasks and task environ-
ments. The data are shown in the rows
labeled B and C, respectively, in figure 3.
Note, however, that to analyze the embed-
ded–non-embedded distinction, I constructed
a contingency table that included only papers
that describe a task (in fact, I left out the row
labeled “C. None” in figure 3) because it
makes no sense to ask whether a task environ-
ment is embedded if there isn’t a task.

Three analyses warrant further explanation:
First, I had to combine data from fields 15–18
into a single superfield called expectations (a
yes in at least one of the fields counted as an
expectation). The rows labeled E in figure 3
show the distribution of expectations. The
contingency table for model-centered, system-
centered, and hybrid papers was derived as
previously described and shows that model-
centered and hybrid papers are more likely
than system-centered papers to discuss expec-
tations (χ2(2) = 10.5, p < .01).

Second, I combined the data in fields 12–14
as shown in the rows labeled D in figure 3.
These rows show the distribution of demon-
strations over all papers. However, I also ran an
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Field 9:

A Natural 3 4 9

A Synthetic 1 4 4

A Abstract 15 29 20

A None 6 6 3

Field 9: Model-centered Hybrid System-centered

A Natural 16 1 22

A Synthetic 9 4 11

A Abstract 64 2 4

A None 15 1 0

Figure 4. Three Classes of Papers with the 
Same Distribution of Types of Examples.

Figure 5. The Contingency Table Derived from Figure 3 for the 
Distribution of Example Types over Three Classes of Papers.



reliability data. I cannot be confident that
another reviewer, given the fields in table 1,
would classify the papers in substantially the
same way. To illustrate the problem, consider
the most difficult question I had to tackle in
the current survey: where to draw the line
between informal analysis and no analysis of
systems (field 8). The line must distinguish
real analyses from guesses, post hoc justifica-
tions, wish lists for extensions to the system,
perfunctory and obligatory references to
other research, and so on. The criteria for this
distinction are subjective; however, I needed
some way to acknowledge the 13 papers that
in an ill-defined way tried to analyze their
systems (especially because 9 of them had no
nonnegative entry in fields 12–18). I believe
that other questions in table 1 can be answered
more objectively but to find out requires a
reliability study for which I solicit volunteers!

Bias because of preconceptions is another
concern. Perhaps by identifying a paper as,
say, a member of SYSTEMS, I became biased
in how I filled in the other fields in table 1.
For example, I might be more likely to classi-
fy an experiment as a demonstration of per-
formance if it came from a SYSTEMS paper
than an ALGS paper because I expected SYS-
TEMS papers to demonstrate performance
more often than ALGS papers. In fact, I
expected exactly this result, but I found the
opposite, so the bias—if it existed—was clear-
ly not strong enough to eradicate the true
result in this instance. Bias is probably a
factor in my results, but I doubt it is a major
factor; at least, I have not discovered obvious
examples of it.

I must also address the concern that the
AAAI-90 papers do not represent the method-
ological status of AI. Perhaps methodologically
superb work is being excluded by space
limits, reviewing criteria, or other factors in
the reviewing process. I found no evidence to
suggest that the reviewing process is a Maxwell’s
demon that lets bad work in and keeps good
work out. Roughly 80 percent of the AAAI-90
papers provide either analysis or demonstra-
tions of performance, which suggests that the
program committee was looking for some-
thing to back up the claims made in the papers.
The fact that roughly 20 percent of the papers
provide neither analysis nor demonstrations
suggests not that superb work was rejected
but that it was hard to come by. Perhaps,
then, it is not the reviewing process but the
requirements of the forum itself (particularly
the page limits), combined with self-selec-
tion, that prevent researchers from sending
their best work to AAAI. No doubt there is

analysis of the distribution of demonstrations
over papers that describe tasks (field 10; see
also rows B in figure 3). The contingency table
in figure 6 shows that among the papers that
describe a task, model-centered papers are more
likely than system-centered papers to present
a demonstration (χ2(2) = 19.97, p < .001).

Finally, to test whether model-centered or
system-centered papers analyze their results
to different extents, I had to slightly change
the definitions of these classes. Recall that
MODELS papers are those that present
models (field 3) or prove theorems about the
models (field 4). Let me change the definition
of MODELS to include those papers that gar-
nered a yes in field 3 only and count a yes in
field 4 as evidence of the analysis of models.
Similarly, let a yes in field 5 or 7 assign a
paper to ALGS or SYSTEMS, respectively, and a
response in field 6 or 8 count as evidence of
analyzing the algorithm or system, respec-
tively. Then, the definitions of model cen-
tered, hybrid, and system centered are as they
were before, and the contingency table relat-
ing these classifications to the distribution of
analyses is shown in figure 7. Clearly, model-
centered papers and hybrid papers (as rede-
fined) are more likely than system-centered
papers to present analyses (χ2(2) = 16.5, p <
.0005).

Problems with, and Concerns about,
the Survey

It would be misleading to end this discussion
without addressing some problems with my
methodology, the way I conducted the
survey. The major problem is that I have no

Articles

40 AI MAGAZINE

Fields 12-14: Model-centered Hybrid System-centered

Demo 31 5 8

No Demo 3 1 14

Fields 4, 6 or 8: Model-centered Hybrid System-centered

Analysis 82 6 16

No Analysis 22 2 21

Figure 6. The Contingency Table for the Distribution of 
Demonstrations in Papers That Described Tasks over 

Three Classes of Papers.

Figure 7. The Contingency Table for the Distribution of 
Analyses over Three Classes of Papers.



something to this belief, but it is not the sim-
plest explanation of the wide variance in the
quality of work presented at AAAI-90.
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Notes
1. Mark Drummond pointed this possibility out. 

2. Raj Reddy and other panelists at the recent Defense
Advanced Research Projects Agency Workshop on
Planning, Scheduling, and Control made this claim. 

3. Nort Fowler brought these questions to my atten-
tion. They are addressed in Margaret Boden’s The
Creative Mind, forthcoming from Basic Books.
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