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Abstract 
The choice of implication as a representation for empirical 

associations and for deduction as a mode of inference requires 
a mechanism extraneous to deduction to manage uncertainty 
associated with inference. Consequently, the interpretation of 
representations of uncertainty is unclear. Representativeness, 
or degree of fit, is proposed as an interpretation of degree of 
belief for classification tasks. The calculation of representative- 
ness depends on the nature of the associations between evidence 
and conclusions. Patterns of associations are characterized as 
endorsements of conclusions. We discuss an expert system that 
uses endorsements to control the search for the most represen- 
tative conclusion, given evidence. 

Tasks can be classified by the kinds of uncertainty 
that characterize them. Planning tasks, for example, arc 
characterized by uncertainty about the interactions of plan 
steps. Strategic plamling is further characterized by un- 
certainty about the intentions and actions of an opponent. 
Perception is characterized by too much data too noisy for 
bottom-up interpretation, and ambiguous with respect to 
top-down models. The subject of this article is classzfica- 
tzon, an important task for many AI systems. Most expert 
systems are classification problem solvers. They heuristi- 
cally associate data with one or more known solutions; the 
problem is to match data with the solution that explains 
them best (Clancey, 1984). 

Uncertainty in ClassifiCation problem solving has two 
major sources. The first is that data may be inaccurate 
or incomplete, and the second is partial matching. This 
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article is not concerned with the quality of data; we focus 
instead on uncertainty inherent in the design and behavior 
of classification systems. The partial matching problem 
has two forms, easily illustrated by the following common, 
empirical association: A person with a queasy stomach, 
fatigue, aching limbs, and a fever has flu in its early stages. 
Now consider a person with a marginal fever, complaining 
of poor appetite, headache, and a persistent twitch in his 
left eye. This case seems to exhibit manifestations not 
stated in the rule for flu and fails to display manifestations 
that are so stated. We are uncertain whether the person 
has flu for two distinct reasons: we cannot be certain that 
the actual symptoms fail to match the stated ones (Does 
LLmarginal fever” count as a fever? Does “headache” count 
as aching limbs?); and we cannot be certain that the rule 
for flu includes all and only the relevant manifestations of 
flu. 

This article is concerned with the representation of un- 
certainty due to partial matching in classification systems. 
Many classification systems represent uncertainty with a 
number or range, but the interpretation of these numbers 
is unclear, due in part to the way that empirical associ- 
ations themselves are represented. Rules, or productions, 
are the representation of choice for empirical associations 
in classification systems. They are modular, modifiable, 
and easily understood; and since they are logical impli- 
cations, deduction is the obvious mode of inference for 
rule-based systems. But against these advantages we must 
weigh the assumptions that implication is an adequate rep- 
resentation of empirical association and that deduction is 
an adequate mode of inference for associative reasoning. 
Subscription to these assumptions leads to a parallel cer- 
tarnty znference approach to reasoning under uncertainty 
(Cohen, 1983). Since deduction is not defined for state- 
ments that are neither true nor false, deductive inference 
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in uncertain domains maintains an uncomfortable, parallel 
coexistence with calculations of the certainty of deductions 
(see Figure 1). While deduction preserves the meaning of 
logical statements, it sheds no light on the meaning of 
statements qualified by degrees of belief. The information 
we need to interpret the degree of belief in an empirical 
association-the type of the association, be it causal, cor- 
relational, based on physical connectivity, or whatever-is 
thrown away when the association is cast into the uniform 
mold of implication. 

The associations that underlie an inference, if repre- 
sented explicitly, permit us to reason about the credibility 
of the inference. For instance, since stress and hyperten- 
sion are causally associated, WC can infer that a person 
under stress will develop hypertension. Further, a person 
under a particular kind of stress, say job-related pressure 
might develop hypertension. The associations KIN D-OF 

and CAUSE are the basis for inferring hypertension from 
job pressure, and also determine the credibility of that 
inference. Given this information, we can write rules of 

plausible inference (Collins, 1978) that are similar to rules 
of deductive inference: 

CAUSE(X,Y) 
KIND-OF(Z,X) 

CAUSE(Z,Y) 

If X causes Y and 2 is a kind of X, then 2 also causes 
Y. The point is that the credibility of these inferences de- 
pends not on X, Y, or 2, but on our everyday understand- 
ing of the terms CAUSE and KIND-OF. These terms tell 
us everything we need to know about the credibility of 
the inference above, provided we know what they mean. 
A qualitative approach to reasoning about uncertainty re- 
quires a set of terms-the associative basis of inferences- 
and enough understanding of the meanings of the terms to 
write rules like the one above. We call the terms endorse- 
ments (Cohen and Grinberg, 1983; Cohen, 1983, 1984). 
This article describes a method for reasoning with endorse- 
ments that represent uncertainty due to partial matching 
in classification tasks. 

We begin with a review of relevant literature, in which 
it becomes clear that the semantics of representations of 
uncertainty are poorly understood. Then we suggest that, 
representations of uncertainty for classification systems 
should be interpreted in terms of the similarity or fit be- 
tween data and solution, not in terms of the relative fre- 
quency of their co-occurrence. Lastly, we show how these 
ideas work in an expert system for matching research pro- 
posals to the appropriate sources of funding. 

Representation of Uncertainty in AI Programs 

Szolovits and Pauker (1978) contrast categorical reason- 
ing, characterized by judgments “made without significant 
reservations,” with probabalistic reasoning. They exam- 
ine a Bayesian model of judgment and conclude that it is 
unrealistic for medical decision-making due to its Vera- 
cious demand for data” and the failure of the assumptions 
that reduce that demand. They describe four probabilis- 
tic approaches, but recognize that the numbers manipu- 
lated by these techniques have different interpretations. 
Two approaches (those of the PIP and INTERNIST sys- 
tems) calculate degrees of fit to prototypes; a third bases 
its “probabilities” on causal arguments (the CASNET sys- 
tem); the fourth (MYCIN) uses numbers that are related 
to conditional probabilities. For all the commonality be- 
tween the so-called probabilistic approaches, Szolovits and 
Pauker might have called their paper “categorical and non- 
categorical reasoning in medical diagnosis” and avoided 
the word probability altogether. We will adopt the term 
non-categorical in recognition of the lack of consensus in 
AI about what we mean by probability. 

A second approach to non-categorical reasoning has 
been to design control structures that minimize the eflects 
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of uncertainty. Opportunistic control structures such as 
“island driving” are one manifestation of this general ap- 
proach (Hayes-Roth and Lesser, 1977). Another is diversi- 
ficatzon. A system may, in recognition of unresolvable un- 
certainty, “cover” as many alternative hypotheses as pos- 
sible. MYCIN took this approach to therapy recommen- 
dation (Shortliffe, 1974); FOLIO (Cohen and Lieberman, 
1983) recommended portfolios that were diversified due 
to uncertainty about investors’ goals. In all these cases, 
uncertainty is acknowledged but not given a probabilistic 
representat,ion. Non-categorical reasoning is not necessar- 
ily probabilistic. But since probability is closely tied to 
mlcertainty in many AI systems, several interpretations of 
the concept are worth examining. 

If categorical reasoning is judgment without signifi- 
cant reservations, then non-categorical reasoning suggests 
qualified judgment. This is apparently the sense in which 
the term “probability” was originally used: 

What we now call the mathematical theory 
of probability was originally called the theory of 
games of chance. Probability was an entirely dif- 
ferent topic; something was probable when there 
was good argument or good authority for it. 
When James Bernoulli and others began to use 
the word probability in connection with the the- 
ory of games of chance, they were expressing the 
ambition that this theory might provide a general 
framework for evaluating evidence and weighing 
arguments. (Shafer, 1984, p. 7) 

Recently, WC have seen two proposals that noncategor- 
ical reasoning should be probabilistic in the original sense 
of being supported by good argument or authority. Cohen 
and Grinberg (1983) and Cohen (1983) outline a theory of 
endorsements, which are reasons to believe and disbelieve 
propositions and Doyle delineates theories of reasoned as- 
sumptions (Doyle, 1983a, 1983b). 

In contrast to these approaches, AI has developed sev- 
eral techniques that are numeric but not probabilistic in 
the sense of games of chance. These include certainty 
factors (Shortliffe and Buchanan, 1984), fuzzy set theory 
(Zadeh, 1975), and the theory of belief functions (Shafer, 
1976; Lowrance and Garvey, 1982). It is unclear how to 
interpret the numbers used in these techniques. They are 
subjective, in the sense that they reflect aspects of beliefs 
about events, not aspects of events themselves. They are 
constructed by psychological effort and are probably an 
amalgam of several considerations, including utility and 
relative frequency (Buchanan and Shortliffe, 1984, p. 217; 
Bar Hillel, 1982). The numbers are probably not accu- 
rate, in the sense that an expert may assess different num- 
bers for the same situation. Studies conducted by the 
MYCIN group suggest that the numbers can be modi- 
fied by as much as 20% without significantly changing the 

certainty-ranking of hypotheses (Buchanan and Shortliffe, 
1984, p. 219). The numbers are used most often in con- 
ditioning designs (Shafer and Tversky, 1985), where de- 
grees of belief in hypotheses are conditioned on evidence. 
There is a close syntactic affinity between a conditional 
probability and a degree of belief in a conditional state- 
ment such as an inference rule. Thus numbers are some- 
times combined as if they were conditional probabilities, 
although they are not. Any interpretation of the num- 
bers may or may not be preserved by the functions that 
combine them. This concern is especially germane since 
humans (even statistically skilled ones) produce “proba- 
bilities” conditioned on evidence that vary sharply from 
those produced by bayesian conditioning rules (e.g., Tver- 
sky and Kahneman, 1982, p. 35; Eddy, 1982). 

These considerations are not intended to condemn the 
use of numbers in programs that reason under uncertainty. 
Provided the meaning of the numbers is clear and pre- 
served by their rules of combination, we have no concern. 
But numbers are a representation of last resort in AI: when 
we know what they mean, we abandon them for more 
symbolic representations. We use numbers only because 
we do not know what they represent. The remainder of 
this article proposes a symbolic representation-and its 
interpretation-for uncertainty in classification systems. 

Representativeness 

We suggest that the interpretation of probability in clas- 
sification systems should be in terms of similarity, not in 
terms of games of chance. This interpretation has prece- 
dent in some frame-based expert systems (e.g., PIP and 
INTERNIST) and in psychological literature, where it is 
called the representativeness heuristic: 

Many of the probabilistic questions with 
which people are concerned belong to one of the 
following types: What is the probability that ob- 
ject A belongs to class B? What is the probability 
that event A originates from process B? What is 
the probability that process B will generate event 
A? In answering these questions, people typically 
rely on the representativeness heuristic, in which 
probabilities are evaluated by the degree to which 
A is representative of B, that is, by the degree to 
which A resembles B. (Tversky and Kahncman, 
1982, p. 4) 

Assessments of subjective probability in classification 
situations are insensitive to factors that affect probability 
(such as prior probability distributions) and sensitive to 
the resemblance between data and their classification. For 
example, Kahneman and Tversky asked subjects to clas- 
sify individuals as librarians or truck drivers on the basis 
of personality sketches. They found that the classification 
was insensitive to the prior distribution of librarians and 
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truck drivers in the population. An individual described 
as “neat, methodical, and shy” was classified as a librarian 
even if the prior probability of being a librarian was low. 
Remarkably, subjects ignored prior probability even when 
the personality sketches were completely uninformative, 
assessing a probability of 0.5 for each alternative instead. 
Translating these results to the expert systems literature, 
we would expect degrees of belief in heuristic associations 
between data and solutions-often represented as condi- 
tional probabilities-to be interpreted not in terms of rel- 
ative frequency, but in terms of the degree to which data 
are representative of a solution. We might hope that ex- 
perts would use probabilistic information more efficiently 
than novices, but evidence suggests that experts are as 
prone to judgment by representativeness as the rest of us 
(Kahneman and Tversky, 1982, p. 35). 

Intuitively, the degree to which evidence is representa- 
tive of a conclusion determines the credibility of the con- 
clusion given the evidence. But if representativeness is 
to be useful as an interpretation of uncertainty in AI pro- 
grams, we need a way to measure it. Kahneman and Tver- 
sky do not specify its determinants (though see Bar Hillel, 
1982, for a domain-specific attempt). Our approach is to 
represent propositions as structured objects and to mea- 
sure representativeness in terms of the nature of the asso- 
ciations between structures. This is illustrated in Figure 2, 
which shows four propositions in a network representation: 

P-l: tobacco CAUSE cancer 

P-2: cigarettes CAUSE cancer 
P-3: tobacco PART-OF crgarettes 

P-4: cigarettes HAS-PART tobacco 

Given a common interpretation of PART-OF and it,s 

inverse HAS-PART, P-l is credible evidence for P-2; but 
P-2 is not credible evidence for P-l, since some other 
PART-OF of cigarettes (besides tobacco) could be respon- 
sible for cancer. The PART-OF association that holds be- 
tween tobacco and cigarettes determines how representa- 
tive P-l is of P-2; similarly, the HAS-PART relationship 
determines how representative P-2 is of P-l. We say that 
if PART-OF is the basis of an inference (e.g., P-l + P-2), 
then the inference is credible to the extent that PART- 

OF preserves representatzveness. If we know a priori that 
PART-OF preserves representativeness better than HAS- 

PART, then P-3 and P-4 tell us all we need to know to 
rank by credibility the inferences P-l -+ P-2 and P-2 + 
Pl. 

Representativeness, defined in terms of the associa- 
tions between structures, is an appropriate representation 
for uncertainty caused by partial matches. We say that 
P-l--tobacco causes cancer-partly matches P-2, the 
proposition cigarettes cause cancer. The degree of match is 
determined by the PART-OF association between tobacco 
and cigarettes, and any uncertainty introduced by using 
P-l as evidence for P-2 is captured fully by the PART-OF 

association. 
Given this, we can interpret the subjective probability 

of a conclusion given evidence in terms of the representa- 
tiveness, or match, between them. For example, the sub- 
jective likelihood that a grant proposal (P) will be funded 
by an agency (A) depends on the degree of overlap between 
the research interests of P and A, the match between the 
desired level of funding for P and the typical award size of 
A, the degree to which P meets any geographic or demo- 
graphic requirements of A, and so on’. In section 4 we dis- 
cuss an expert system for matching research proposals to 
the agencies most likely to fund them. But for now, we will 
use the words proposal and agency more loosely: a pro- 
posal is an arrangement of evidence, and an agency is one 
of the conclusions that can be drawn from the evidence. 
We might equally well talk about symptoms and diseases 
or core samples and lithographic strata. The theme is the 
same: the most likely of several conclusions is the one that 
best matches the available evidence. 

We have adopted a network formalism to facilitate 
judgments of the match between evidence and conclusions. 
Figure 3 shows a proposal (P2) to study the effectiveness 
of methadone as a treatment (called an INTERVENTION 

in our system) for heroin addiction. An agency (A2) wants 
to support work on psychological counseling for drug ad- 

‘The likelihood of an agency funding a proposal also depends on the 
prior probability of funding Failure to account for this factor leads 
to the same error as in Kahneman and Tversky’s Librarian example 
We thank Dan Corkill for this observation The GRANT system, 
discussed below, is based on the assumption that all agencies have 
the same prior probability of funding a proposal. GRANT can be 
thought of as updating this probability based on information about 
the research topic of the proposal 
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diets. Is the match between P2 and A2 a good one? If A2 
is interpreted as the proposition, “Someone wants to fund 
the study of psychological counseling for drug addicts,” is 
P2 evidence for this proposition, and how strong is the 
evidence? The mismatches between P2 and A2 are two: 
P2 mentions methadone while A2 focuses on psychologi- 
cal counseling, and P2 is interested in heroin addicts in 
contrast to A2’s drug addicts. The credibility of P2 as 
evidence for A2 clearly depends on the relationships that 
hold between the components of P2 and A2. 

Since heroin addiction ISA drug addiction, an interest 
in the latter is credible evidence of an interest in the for- 
mer. Methadone treatment often has psychological coull- 
seling as a component, so the evidence (methadone treat- 
ment) is related to the conclusion (psychological counscl- 
ing) by HAS-PART. Earlier, in the context of Figure 2, 
we said that the HAS-PART relationship preserved repre- 
sentativencss relatively poorly. But in this case, it seems 
reasonable to infer an interest in psychological counsel- 
ing from an interest in methadone treatment, given the 
HAS-PART relation that holds between thern. This ap- 
parent contradiction illustrates that the credibility of an 
inference actually depends on one factor in addition to the 
nature of the associations on which it is based: the na- 
ture of the inference itself. We can infer the existence of 
an object, given that it is PART-OF another object that 
exists, bat we cannot infer a property of an object given 
that it is PART-OF another object with that property. If 
cigarettes are carcinogenic, we cannot infer that tobacco 
is carcinogenic given only that cigarettes HAS-PART to- 
bacco. Similarly, if methadone treatment is addictive, we 
cannot infer psychological counseling is addictive, giveu 
only that methadone treatment HAS-PART psychological 
counseling. This said, we confine ourselves for the rest 
of this article to inferences about the existence of things, 
or rather, to inferences about the existence of an znterest 
in things. Although HAS-PART does not preserve repre- 
sentativeness for inferences about properties of things, we 
may credibly infer that a funding agency is interested in 
methadone treatment if it is interested in psychological 
counseling and methadone treatment HAS-PART psycho- 
logical counseling. 

On the basis of these considerations, we conclude that 
P2 is representative of A2. Given P2, we may infer A2, 
and any uncertainty in the inference is captured by the 
associations ISA and HAS-PART. These “pathways” of as- 
sociations between evidence and a conclusion determine 
the credibility of the conclusion given the evidence. They 
play an important role in our approach; we call them 
path endorsements. Endorsements are reasons to believe 
and disbelicvc propositions and are the basis of explana- 
tions and control decisions in uncertain reasoning (Cohen, 
1983). Path endorsements, too, summarize reasons to be- 
lieve and disbelieve. They tell us whether a proposition is 
acceptable evidence for another, if not why not, and they 

provide a basis for control of reasoning. We will see that 
they are derived directly from the representation language 
of a domain, so they characterize uncertainty in a domain 
in the same language as is used to describe conclusions. 
This is an improvement over previous manifestations of 
the theory of endorsements, in which endorsements were 
statements in a language extraneous to the domain and 
justified on intuitive grounds. 

Path endorsements sometimes specify that an associa- 
tive path is not representative and cannot be the basis 
of a credible inference. Consider two propositions. A3 
is “Someone wants to study the effectiveness of counsel- 
ing for treating eating disorders” P3 is “Someone wants to 
study the effectiveness of counseling for psychological dis- 
orders.” These propositions may be illustrated as network 
diagrams as in Figures 2 and 3; equivalently, they may be 
represented as frames: 

(P3 ISA instance of INTERVENTION with 
TYPE =counseling 
MANAGE=psychological-disorder) 

(A3 ISA instance of INTERVENTION with 
TYPE =counseling 
~~~~~E=eating-disorder) 

Is P3 evidence for A3? As before, the answer depends 
on the relationships that hold between the components of 
P3 and A3. Both name counseling as the TYPE of INTER- 
VENTION, but they differ on the phenomenon the coun- 
seling is intended to MANAGE. P3 mentions psychological 
disorders; A3 is more specifically interested in eating dis- 
orders. In Figure 3 we noted that heroin addiction was an 
instance of, and thus evidence for, drug addiction. In con- 
trast, psychological disorders are not an instance of eating 
disorders; the opposite is true. The difference between the 
cases is easily summarized: 

MANAGE( P2) = heroin-addiction 
MANAGE(A2) = drug-addiction 

thus, ISA(MANAGE(P2),MANAGE(A2)) 

MANAGE(P3) = psychological-disorder 
MANAGE(A3) = eating-disorder 

thus, ISA-lNVERSE(MANAGE(P3),MANAGE(A3)). 

An ISA link was the basis of the inference P2 -+ A2, 
but an ISA-INVERSE link is the basis of the inference P3 
-+ A3. The one corresponds to inferring a superclass given 
evidence of the subclass, the other corresponds to the op- 
posite direction of inference. In general, one can credibly 
infer the existence of a superset (psychological disorders) 
from a subset (eating disorders) but not vice versa. ISA 

preserves representativeness but ISA-INVERSE does not. 
Consider this example: 
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heroin methadone 
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1 ~42: intervention 

Figure 3. 

ISA ISA-INV 

autism-)mental disorder -)schizophrenia 

Schizophrenia and autism are both instances of psy- 
chological disorders. It is reasonable to infer an interest in 
psychological disorders given an interest in autism, but we 
must be careful not to proceed further to infer an interest 
in schizophrenia. We know that an interest in autism dots 
not credibly imply an interest in schizophrenia because the 
path between them includes an ISA-INVERSE link. The 
path ISA ISA-INVERSE is common enough to warrant a 
name-we call it a SIBLING endorsement. Any conclusion 
with a SIBLING endorsement is not credible. It is useful to 
know which chains of associations are the basis of credible 
inferences and which are not, since this information can 
be used to control search for credible conclusions in an 
associative network. We will return to this point shortly. 

So far we have considered the degree of representative- 
ness between individual components of a proposition. An 
analysis of Figure 3 showed that methadone treatment was 
credible evidence of psychological counseling, and heroin 
addiction was credible evidence of drug addiction; we did 
not say how to “sum” thcsc pieces of evidence to compute 
an overall match between P2 and A2. We are currently 

implementing such a scheme, though it is not part of the 
program described in Section 4. We will sketch our ap- 
proach here. 

The overall degree of fit between P2 and A2 (Figure 3) 
depends on whether the components of P2 are acceptable 
evidence for A2 and on the importance of that evidence. 
We use path endorsements to determine the first criterion, 
and numerical weights for the second. For instance, if the 
emphasis of A2 is primarzly on drug addiction, we might 
represent this emphasis with numbers: 

(A2 instance of INTERVENTION with 
TYPE (= psychological counseling) (weight .2) 
MANAGE(= drug addiction) (weight .8) ) 

The path endorsements of P2 (HAS-PART for the in- 
ference of psychological counseling given methadone treat- 
ment and ISA for the inference of drug addiction from 
heroin addiction) are both acceptable, so the overall de- 
gree of fit in the inference P2 + A2 is 1.0. The importance 
of the weights above is manifest when a proposal does not 
provide adequate evidence for all parts of an agency. Con- 
sider another proposal, P4, to study psychological coun- 
seling as a treatment for schizophrenia (Figure 4). The 
path from schizophrenia to drug addiction has the SIB- 
LING endorsement, discussed above, so P4 is not adequate 
evidence of an interest in drug addiction. The path from 
psychological counseling (in P4) to psychological counsel- 
ing (in A2) has the EQUAL endorsement, since they are 
the same concept. The degree of fit between P4 and A2, 
then, is 

(.8 x (weight of SIBLING)) + (.2 x (weight of EQUAL)) 

Currently, path endorsements have weights of 0 or 1, 
indicating that they support credible inference or don’t. 
Given this, the overall credibility of the inference P4 + 
A2 is .2.2 

Although endorsements can have arbitrary numeric 
weights, all our work is based on weights of 0 or 1. This 
is unrealistic-some credible associative paths are clearly 
more credible than others-but our research program is 
currently angled toward discovering reasons for credibility 
in the associations of a domain. We arc more concerned 
with why associative inferences are credible than with the 
degree of their credibility. 

Given that endorsements determine the acceptability 
of evidence, we can use them to control search in an as- 
sociative network. Figure 5 shows a proposal (P5) to 
study management of hypertension by regulating dietary 

2Although we have yet to explore the possibilities, statements about 
the weights of combinations of slots are also possible; for example, 
evidence for slots X and Y may individually be inadequate evidence 
for a frame, but adequate in conjunction; or, a slot may be “crite- 
rial,” so that the fit between evidence and conclusion is zero lacking 
evidence for that slot, irrespective of the evidence for the other slots 
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sodium, and three agencies (A4, A5, A6) interested in nu- 
trition, cardiovascular disorders, and psychological coun- 
seling to reduce stress, respectively. Four boundaries are 
drawn around these structures. The boundary around P5 
is called the evidence boundary since it circumscribes the 
structure that represents evidence. The others are called 
conclusion boundaries and are drawn around A4, A5, and 
A6. If the evidence boundary can be extended by follow- 
ing pathways that have acceptable endorsements, until it 
includes all nodes in a conclusion boundary, then the de- 
gree of belief in the conclusion given the evidence is 1.0. 
If the evidence boundary cannot be extended to include 
all the nodes in the conclusion boundary, then the degree 
of belief in the conclusion given the evidence is a function 
of the relative weights of the nodes that are included and 
excluded, as described above. 

Starting at the edges of the evidence boundary- hy- 
pertension and dietary-sodium-we consider which asso- 
ciated nodes might be included in an expanded evidence 

boundary. By the reasoning of earlier examples, ISA is 
considered an adequate path endorsement, and so the evi- 
dence boundary can be extended to include cardiovascular- 
disorder. As it happens, this is the sole interest of the 
agency A5, so the match between P5 and A5 is perfect. 
Stress is one CAUSE of hypertension, but since hyperten- 
sion has several causes (one of which is dietary sodium), an 
interest in hypertension is not evidence for an interest in 
any single cause. (This is similar to the ISA-INVERSE case, 
discussed above.) Thus, stress is excluded from the evi- 
dence boundary. This suggests that agency A6 will be ex- 
cluded also unless the evidence boundary can be extended 
by another path to stress, and/or the boundary can be 
extended to include psychological counseling. Given the 
network as shown, neither is possible. 

The boundary can be extended, however, from the 
node dietary-sodium to the node nutrient by the accept- 
able path ISA But before we can extend the evidence 
boundary further to include the node nutrition, we have to 
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consider whether the combination of paths ISA followed by 
OBJECT is acceptable. Would a funding agency consider 
an interest in nutrients as adequate evidence for an interest 
in nutrition? And what about an interest in one particu- 
lar nutrient? Other, formally identical, questions can be 
posed to an expert in the domain of funding sources. If an 
agency is interested in drug addiction, is it likely to be in- 
terested in a particular drug? That is, if heroin ISA drug, 
and drug is the OBJECT of drug addiction, is an interestc 
in heroin evidence for an interest in drug addiction? After 
posing this and similar questions to our expert, we believe 
that the path endorsement ISA.OBJECT, which denotes 
a sequence of inferences based on the ISA and OBJECT 
links, respectively, is adequate: we can infer an interest in 
nutrition from an interest in dietary sodium. This admits 
agency A4 into the evidence boundary. 

This example illustrated that associative paths be- 
tween evidence and conclusions can include multiple as- 
sociations and that not all associative paths are the basis 

for credible inferences. A complex network of associations 
can support a great many inferences, and so the rules for 
extending the evidence boundary to include all and only 
credible conclusions are important. The next section de- 
scribes an expert system that, by merit of 19 such rules, 
infers which federal agencies are most likely to fund a pro- 
posal. 

GRANT: Expert Reasoning 
by Constrained Association 

GRANT is an expert system that recommends funding 
sources for research projects. The system is being devel- 
oped in collaboration with the Office of Research Affairs 
at the University of Massachusetts.3 At the beginning of 
a consultation with GRANT, an investigator states his or 
her proposal, for example, “to study the effects of stress 

3The director, Bruce McCandless, and his assistant, Marg Burggren, 
are our experts. 
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on hypertension in animal populations.” Then GRANT 
finds and ranks all agencies that fund this and related 
research. Ideal performance involves finding one or two 
well-endowed funding sources that wish to fund exactly 
the proposed research. More often, no such agencies ex- 
ist, but GRANT finds several that fit the proposal ade- 
quately. For example, an agency that wants to study “the 
causes of hypertension” is a good fit to the proposal just 
mentioned, even though it doesn’t specify “stress” as the 
cause or “animal populations” as the experimental matrix. 
A poorer fit is to an agency that funds research in “cardio- 
vascular disease.” An agency that wants to fund research 
distantly related to stress (e.g., “the stressful effects of 
rotating shifts”) is a poor fit. 

GRANT finds funding sources in two phases, called 
proposal-directed and matching, respectively. Proposal- 
directed search expands the evidence boundary around a 
proposal until it cannot be expanded further. During the 
matching phase, the agencies that fall within the evidence 
boundary are ranked by their degree of fit to the proposal, 
using a weighted sum measure as discussed above. This 
has been implemented in prototype only, so we limit our 
discussion to proposal-directed search. Proposal-directed 
search is constrained by the rules that expand the evidence 
boundary to find topics that are representative of the orig- 
inal proposal. Thus, GRANT finds agencies that fit the 
proposal as well as possible-agencies that are most likely 
to fund the proposal, given our interpretation of subjective 
probability in terms of representativeness. 

Knowledge Representation 
GRANT has two kinds of knowledge, a semantic network 
of topics in science (called the topic network) and a set of 
heuristic rules for searching this network. The represen- 
tation of heuristics is described below. Nodes in the topic 
network are the concepts needed to express the research 
interests of funding agencies. Every agency is indexed to 
one or more nodes in the topic network. The topic network 
consists of about 800 nodes, sufficient to describe the re- 
search aims of the 50 agencies that fund the most research 
at the University of Massachusetts. The average branching 
factor of the network is about 4. A program called Build- 
net helps with the addition of new agencies by prompting 
for typical agency information and keeping a stack of any 
concept used to define an agency that is absent from the 
topic network. A synonym facility allows the user to refer 
to the same concept in different ways (e.g., salt, sodium, 
and dietary-sodium are currently synonyms). 

The topic network contains the kinds of objects that 
populate the domain of funding sources and the associ- 
ations that hold between them. Specifying the classes of 
objects and their interrelationships is tantamount to giving 
a case semantics for the language of funding sources. Fig- 
ure 6 shows in tree form the objects we reason about. All 
objects are phenomena, and the ones that funding sources 

are most concerned with are states, processes, and things. 
States are typically the goals of an agency, such as safety 
and nourishment. Other states, such as illness and urban 
blight, although not strictly goals, are represented simi- 
larly. Processes have two forms, intentional and physical. 
An intentional process is done by someone with some pur- 
pose in mind. Study and intervention are important in- 
tentional processes. Studies include art history, biology, 
. . .> zoology. Interventions include various therapies and 
legislative acts. Other intentional processes in+de cases 
where the intention is not very clear, such as smoking. Co- 
varzance is a physical process, and denotes the many sit- 
uations in which one thing changes as the consequence of 
another. All grant proposals are represented as instances 
of study, intervention or covariance. For example, the 
proposal to study the effects of crowding-induced stress 
on hypertension in animal populations is represented this 
way: 

(topic = 
(instance of covariance with 

(dependent-variable = hypertension) 
(independent-variable = 

(instance of stress with 
(cause = crowding)) 

(experimental-matrix = animals)))) 

Other physical processes include various disorders, 
such as anorexia, bulimia, cancer, and so on. The world 
of things is organized in a shallow but branchy tree. Liv- 
ing and non-living things are distinguished, as arc plants, 
animals, and people. 

Thcsc objects arc not enough to represent the inter- 
ests of funding sources or research proposals. In addi- 
tion, and to provide us with a basis for endorsements, 
we need to know how these objects associate with each 
other. Figure 7 shows Figure 6 redrawn with superim- 
posed labeled arcs between the objects. These are the 
associations known to GRANT. For example, every pro- 
cess has a SETTING, which must be a thing. Every inten- 
tional process has a WHO (the person who does it) and 
a WHO-FOR (the beneficiary). These associations map 
between intentional processes and people. Some associ- 
ations are transitive in the sense that their domain and 
range are the same kind of object. For example, studies 
have foci, which are themselves studies: molecular biol- 
ogy is an instance of biology (a study) with a FOCUS of 
chemistry (another study). The granddaddy transitive as- 
sociation is ISA, which holds for any phenomenon. Oth- 
ers include CAUSE one process causes another and so on. 
The case frame for each object is just the set of associ- 
ations unique to the object, plus those associations that 
characterize the ancestors-in the tree of Figure 7-of the 
object. For example, the case frame for study includes 
FOCUS and FOCUS-INVERSE, SUBFIELD and SUBFIELD- 

INVERSE, and EXPERIMENTAL-MATRIX It also includes 
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Figure 6. 

OBJECT, PURPOSE, WHO, and other case relations in- 
herited from intentional-process, as well as other relations 
inherited from process and phenomenon. 

Path Endorsements 
Path endorsements are the associative paths that GRANT 
might follow to expand its evidence boundary. Some 
path endorsements are positive, meaning that an inference 
based on such a path is credible. Some are negative. The 
SIBLING path endorsement, discussed above, is negative. 
A related negative path endorsement accrues to the path 
EFFECT followed by EFFECT-INVERSE. For example, if 
a researcher is interested in Type-A behavior, then she 
may be interested in one of its EFFECTS, such as hyper- 
tension. But she probably is not interested in something 
other than Type-A behavior that has hypertension as its 
EFFECT, such as dietary sodium: 

Type-A - hypertension - dietary sodium 
behavior 

One cannot credibly infer that someone interested in 
Type-A behavior is interested in dietary sodium. The ev- 
idence boundary can be expanded from Type-A behavior 
to hypertension, but it should not be further expanded 
to dietary sodium. The endorsement on the path from 
Type-A behavior to dietary sodium is used to control the 
expansion of the evidence boundary. 

This knowledge has both declarative and procedural 
representations. The declarative form of a path endorse- 
ment is 

(defpath endorsement-name endorsement-class 
([path endorsement-name] 

(step link-predicate node-predicate) 
[path endorsement-name] . 

EFFECT EFFECT-INV One specifies the name of the endorsement and its 
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purpose 

f subfield experimental-matrix 

class. In different versions of GRANT we have used the node. The classification ‘(trash” means, in the current ver- 
class variable both to specify the qualitative type of an en- sion of GRANT, that the path cannot be used to expand 
dorsement (e.g., endorsements based on transitive associ- the evidence boundary. Another example is used to avoid 
ations) and to specify the weight of the endorsement. The including in the evidence boundary very general concepts: 

(defpath general trash path itself is composed of an indefinite number of com- 
ponents. Each may include another, previously named, 
path endorsement at any point in its own specification. 
Each specifies a STEP from the current node over a link 
that satisfies LINK-PREDICATE to a node that satisfies 
NODE-PREDICATE And each includes an optional repeat 
factor. For example, the EFFECT EFFECT-INVERSE en- 
dorsement is represented this way: 

(defpath sibling-effect trash 
(step effect all) 
(step effect-inverse all)> 

The sibling-effect endorsement belongs to the class 
trash and is composed of a step over an effect link to any 
node followed by a step over an effect-inverse link to any 

Figure 7. 

(step all (predicate general-nodep))) 

That is, any link to a node that satisfies the predi- 
cate general-nodep will not be allowed to extend the ev- 
idence boundary. The nodes that satisfy this predicate 
in GRANT are thing, behavior, state, covariance, person, 
illness, and some others. It is vacuous to infer that be- 
cause a researcher is interested in, say, anorexia, he is in- 
terested in illness. Moreover, since the fan-out of illness 
is very high, including the node in the evidence boundary 
makes GRANT work too hard to consider-and reject- 
the many extensions to the evidence boundary that might 
be made from the illness node. 

The procedural form of this knowledge is a compiled 
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Rete net (Forgy, 1982) of all paths for which endorsements 
have been defined. Expanding a node is equivalent to 
adding a link to an extant path; this new path is discrim- 
inated through the Rete net of paths and its endorsement 
is returned. 

Control Structure 
GRANT first expands its evidence boundary as far as pos- 
sible, then determines the best fit between the evidence 
and all solutions captured in the evidence boundary. These 
are the proposal-directed and matching phases, respec- 
tively. The matching phase is accomplished by a weighted- 
sum measure as described above, but since it has been im- 
plemented in prototype form only, we confine our discus- 
sion to proposal-directed search. Proposal-directed search 
has two versions. In one, we used an agenda to control the 
order in which nodes within the evidence boundary were 
expanded. The idea was to expand the nodes with good 
path endorsements before those with poor ones. Six classes 
of endorsements were used, of which “trash” was the worst. 
A general sibling (any link followed by its inverse) was 
also a poor endorsement. Good endorsements included 
those based on transitive relationships such as CAUSE and 
ISA. This form of proposal-directed search is essentially a 
best-first search in which the evaluation function returns 
the ordinal rank of the class to which an endorsement be- 
longs. However, it requires an a priori ranking of endorse- 
ments. The second form of proposal-directed search re- 
quires just two classes of endorsements-acceptable and 
unacceptable. It expands all nodes with acceptable en- 
dorsements. The results described in the next section are 
based on this version of proposal-directed search. 

Results 
This section discusses a test of endorsement-constrained 
reasoning. Twenty-three proposals were selected from the 
files of the Office of Research Affairs at the University 
of Massachusetts. Proposal-directed search was run on 
these proposals in two modes, called minamum-distance 
and endorsement-constrained. In the minimum-distance 
(MD) mode, GRANT blindly expands the evidence bound- 
ary around a proposal. Each node in the proposal is ex- 
panded to all its neighbors, which are said to have a radius 
of 2. Each node at radius 2 is expanded to all its neigh- 
bors at radius 3, and so on. GRANT reports the agencies 
it finds at each radius. It continues expanding the evidence 
boundary until it finds at least 10 agencies. In fact, it finds 
an average of 15 agencies per proposal, since it reports all 
the agencies within the radius at which it finds its 10th 
agency. The minimum-distance method usually found its 
10th agency at a radius of 4. It went beyond that radius 4 
times for 23 proposals. In endorsement-constrained (EC) 
mode, GRANT expands the evidence boundary in accor- 
dance with path-endorsements. It reports agencies as it 
finds them, and it quits expanding the boundary when no 

node within the boundary can be expanded without incur- 
ring a negative path endorsement. 

For each proposal, we asked our expert to rank the 
agencies found by MD search by the judged likelihood that 
each would fund the proposal. He preferred to classify 
every agency as good or bad. We asked for any agencies 
that should have been included in the list produced by MD 
search, but only once did our expert exercise this option. 
Thus, a blind MD search finds the agencies that the expert 
wants: its hit rate is 100%. But it also finds a large number 
of agencies that he doesn’t want. That is, it eventually 
finds all the agencies that arc judged representative of a 
proposal, as well as many unrepresentative agencies. As 
noted above, the average number of agencies found by MD 
search is 15. But on average, only 2 of these were judged 
good by our expert. Thus, the overall false positave rate 
is (15 - 2) / 15 = 87%.4 These figures provide a standard 
against which to compare EC search. EC search preserves 
representativeness better than MD search to the extent 
that its hit rate is higher and its false positive rate is lower. 

The hit rates for MD and EC search are 100% and 
SO%, respectively (see Table 1). MD search finds all the 
good agencies, EC search finds 4 out of 5. The false pos- 
itive rates are 87% and 32%, respectively. Most of the 
agencies found by MD search are judged bad; a third of 
those found by EC search are bad. Note that the false pos- 
itive rate for EC search overall is less than for MD search 
at radius 2. Thus, EC starch is better able to discriminate 
representative from non-representative conclusions, even 
when the associative path between evidence (proposals) 
and conclusions (agencies) is very short. 

Table 2 gives a clearer picture of the false positive 
rates. It shows the average number of agencies returned 
by MD search at each radius and the number of those 
agencies that were judged good. The ratios of these num- 
bers are found in the hits/try column. These numbers 
are incremental, not cumulative. For example, at radius 2 
MD search finds an average of 2.26 agencies of which 1.0 
is good. At radius 3, it finds, on average, 2.44 additional 
agencies, of which an average of .57 is good. Thus the per- 
centage of hits per try at radius 2 is 48%; at radius 3 the 
percentage is 23%; at radius 4 the percentage drops to 3%. 
Clearly, most good agencies (those judged representative 
of a proposal by our expert) are “near” the proposal, but 
not all nearby agencies are representative. Moreover, rep- 

4The formulae for hit rate, false positive rate, and miss rate are: 

hit rate = 

false positive = 

(number of agencies judged good GRANT and bad by the expert) 
(number of agencies judged good by GRANT) 

miss rate = 1 - hit rate 

THE AI MAGAZINE Fall, 1985 147 



Minimum-distance Agencies found Good agencies Bzd agencies Wit rate FP rate 3liss rate 

radius = 2 
radius = 3 
radius = 4 
radius = 4 

Endorsement 
Constrajned 

Average Hit and F’alse Positive Rates for 23 Proposals. 

Table 1. 

resentative agencies can be found relatively far from the above, we have no mechanism in GR.ANT to sum the de- 
proposal. The “good agencies” column of Table 1 shows gree of fit between all components of a proposal and an 
that 50% of the representative agencies are at radius 2, agency. Provided any component of an agency is within 
28% are at radius 3, 13% are at radius 4, and 9% are at the evidence boundary of a proposal, it is judged good by 
distances greater than 4. To the extent that endorsement- EC search. Once we solve this problem, the false positive 
constrained search can find these more distant agencies rate for EC search should drop. Second, the reason that 
and still maintain a relatively low false positive rate, it EC search misses agencies at more distant radii is that, its 
is superior to minimum distance search. In fact, for 23 path endorsements tightly restrict the expansion of the ev- 
proposals, EC search found a total of 64 agencies, 18 at idence boundary. We can relax these endorsements at the 
a radius of 3 or more. EC search thus finds 28% of its expense of more false positives. This should prove a good 
agencies at radii where MD search makes most of its false strategy once we can rule out candidate agencies based on 
positive errors. their total degree of fit to the proposal 

Endorsement-constrained search is nonetheless imper- 
fect. Its false positive rate is 32%, and it fails to find 20% 
of the agencies judged good by the expert. The reasons 
for these errors are of two kinds. First, EC search rarely 
misses a good agency within radius 2, but many of its 
false positive errors occur there. Conversely, most of its 
misses are at radii greater than 2, but false positives are 
rare. A path of length 2 between a proposal and an agency 
implies that they share a common node; for example, the 
node psychological-counselzng is shared by proposal P4 and 
agency A2 in Figure 4. P4 would be judged representa- 
tive of A2 by endorsement-constrained search, even if they 
have nothing else in common! This is because, as we said 

Conclusion 

Endorsement-constrained search finds a sizeable portion of 
the agencies considered representative by our expert and 
does not find many agencies that the expert considered ml- 
representative. EC search thus operationalizes representa- 
tiveness. It finds agencies judged likely to fund a proposal, 
based on the nature of the associations between the pro- 
posal and agencies. Viewed as a classification problem- 
solver, EC search finds the best classes (agencies) given 
evidence (proposals). Uncertainty in this task arises from 
partial matches between components of evidence and con- 
clusions. Path endorsements are an explicit representation 

Agencies found Good agencies Hits/% 
radius = 2 2.26 1 .oo .44 
radius = 3 2.44 0.57 ‘) 3 .“3 
radius = 4 7.713 0.26 .03 

Average Hits/‘Ry at Incremental ELadii for 23 proposals. 

Table 2. 
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of this uncertainty and are successfully used to control 
search for those conclusions that minimize uncertainty. 
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