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Summary.

In the analysis of algorithms we are interested in obtaining closed form
expressions for algorithmic complexity, or at least asymptotic expressions
in O(·)-notation. It is often possible to use experimental results to make
significant progress towards this goal, although there are fundamental rea-
sons why we cannot guarantee to obtain such expressions from experiments
alone. This paper investigates two approaches relating to problems of de-
veloping theoretical analyses based on experimental data.

We first consider the scientific method, which views experimentation
as part of a cycle alternating with theoretical analysis. This approach has
been very successful in the natural sciences. Besides supplying preliminary
ideas for theoretical analysis, experiments can test falsifiable hypotheses
obtained by incomplete theoretical analysis. Asymptotic behavior can also
sometimes be deduced from stronger hypotheses which have been induced
from experiments. As long as complete mathematical analyses remains elu-
sive, well tested hypotheses may have to take their place. Several examples
are given where average complexity can be tested experimentally so that
support for hypotheses is quite strong.

A second question is how to approach systematically the problem of in-
ferring asymptotic bounds from experimental data. Five heuristic rules for
“empirical curve bounding” are presented, ogether with analytical results
guaranteeing correctness for certain families of functions. Experimental
evaluations of the correctness and tightness of bounds obtained by the
rules for several constructed functions and real datasets are described.

5.1 Introduction

The complexity analysis of algorithms is one of the core activities of computer
scientists, especially in the branch of theoretical computer science known as
algorithmics. The ultimate goal would be to find closed form expressions
for the runtime (or other measures of resource consumption), in terms of
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input parameters of interest. Since this is usually too complicated, we are
often content with asymptotic expressions for the worst case performance
depending on a small number of input parameters like problem size, which
are usually presented in O(·)-notation. Even this task can be very difficult so
it is important to use all available tools.
In this paper we investigate the empirical version of this primary activity

– how to use finite experimental data to shed insight on universal asymptotic
properties of algorithms. We illustrate both the promise and the difficulties
inherent in the use of experiments to suggest, support, and refute hypotheses
about asymptotic behavior. Experimental data can be employed for asymp-
totic analysis both indirectly – for example, in support of conjectures neces-
sary to theoretical arguments; and directly, by extrapolation of trend data
beyond the range of experimentation. In the latter scenario, we consider a
specific problem, which we call empirical curve-bounding: given a set of data
points (Ni, Yi) obtained from an experiment in which Yi = f(Ni), for some
unknown function f(n), find complexity classes O(gu(n)) and/or Ω(gl(n)) to
which f(n) belongs.
This paper has two goals. The first is to show how, with some care, it is

possible to obtain good insights about asymptotic trends, based on analyses
of data obtained from experiments. One way to make the meaning of “some
care” more precise is to apply the terminology of the scientific method [5.31].
The scientific method views science as a cycle between theory and practice.
Theory can inductively or (partially) deductively1 formulate falsifiable hy-
potheses which can be tested by experiments. The results may then yield
new or refined hypotheses. This mechanism is widely accepted in the natural
sciences and is often viewed as a key to the success of these disciplines. We
present four examples of ways in which the scientific method can be applied
to the use of experimentation to advance the goals of asymptotic algorithm
analysis, using problems in parallel disk scheduling, random polling, shellsort,
and randomized process allocation.
The second goal is to evaluate a collection of curve-bounding techniques,

in order to identify their practical limitations. Unfortunately, no data analysis
method for inferring asymptotic trends in data can be guaranteed correct for
all data sets: to see this, note that for any finite vector of problem sizes,
there are functions of arbitrarily high degree that are indistinguishable from
the constant function c at those problem sizes. Therefore any algorithm for
this problem must be regarded as a heuristic that sometimes fails. We desire
robust heuristics that produce correct bound estimates (or clear indications
of failure) for broad classes of functions and for functions that tend to arise
in practice.
We describe five simple heuristics (or rules) for curve bounding, and a

hybrid rule that handles some specific pathologies. For each of the five rules,
1 Inductive reasoning draws general conclusions from specific data whereas deduc-
tive reasoning draws specific conclusions from general statements.
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we present analytical results guaranteeing correctness for certain families of
functions. Then, using a variety of algorithmic data sets, we evaluate the
rules in “typical” and in near-pathological situations. Negative results con-
cerning two plausible rules that turned out to have high failure rates are also
presented.
In our informal and designed experiments with little or no random noise

in the data, all the rules generally provide correct asymptotic bounds that
are within about a

√
n factor of the true asymptotic bound. The reliability

of the rules deteriorates, however, in the presence of random variation in
the data, and/or when too-large constants or negative coefficients appear in
second-order terms. Fortunately it is usually easy in algorithmic problems to
reduce the noise problem by taking more experiments or applying variance
reduction techniques during experimentation. It is of course possible to reduce
the effect of large second-order terms by taking larger problem sizes, but the
rules can be slow to respond to this type of change. A hybrid diagnostic
method described in Section 5.6 can be used with success on such problems.
This explicit study of techniques for curve-bounding appears to be com-

pletely new. We can find no techniques in the statistical and data analysis
literature specifically designed for finding asymptotic bounds on data, al-
though much is known about fitting curves to data. As we shall demonstrate,
good algorithms for curve fitting are not always best for curve bounding, and
vice versa.
The importance of experiments in algorithm design and analysis has

gained much attention in the past decade. New workshops (ALENEX, WAE)
and journals (ACM Journal of Experimental Algorithmics) have been in-
stalled, and established conferences (e.g., SODA, ESA) explicitly call for
experimental work. Several articles [5.4], [5.19], [5.27], [5.28]) present guide-
lines for performing experiments on algorithmic research problems, and one
book [5.12] presents methods of data analysis in the context of experimen-
tation on heuristic algorithms. Using the scientific method as a basis for
algorithmics was proposed by Hooker [5.17], but similar ideas concerning ex-
perimental computer science in general can also be found in other papers
[5.14, 5.15, 5.3, 5.37, 5.16, 5.23, 5.29, 5.41].
Section 5.2 reviews the main difficulties in experimental algorithmics and

explains how to partially solve them. Section 5.3 gives several concrete exam-
ples of using experimental results to suggest, support, or to falsify hypotheses
about algorithmic performance. The algorithms presented in this section are
randomized, with expected resource consumption dependent only on input
size so that many repeated experiments give us rather accurate information
on average behavior. On the other hand, all the algorithms are nontrivial to
analyze analytically. It turns out that in this situation the scientific method
with a close, problem specific interaction between theoretical and experi-
mental reasoning yields quite accurate insight on the asymptotic behavior of
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the algorithm. For example, in Section 5.3.2 we are able to resolve even an
additive O(log logn) term.
We then turn to a systematic evaluation of rules for the empirical curve-

bounding problem. Section 5.4 presents each rule R, together with a “justi-
fication” that describes a class of functions for which the rule is guaranteed
correct. Section 5.5 presents an empirical study of the rules using data sets
from constructed parameterized functions. We observe that some rules are
sensitive to large lower order terms and some to random noise, and some to
both. Most of the rules are surprisingly unresponsive to changes in the largest
problem size. One rule produces bounds that are rarely incorrect and rarely
tight. A second collection of data comes from eight experimental studies of
algorithms, to assess performance on “typical” algorithmic problems. In three
cases there is at least a logarithmic gap in known analytical bounds, and we
show how the rules can (and cannot) be used to support conjectures that
tighten the gaps.
Section 5.4 assumes some familiarity with data analysis terms such as

correlation coefficient, least-squares regression, and residuals, which may be
found in any introductory statistics textbook. For introductions to the curve-
fitting methods adapted here for curve-bounding, see Atkinson [5.1], Cohen
[5.12], Chambers et al. [5.11], Rawlins [5.33], or Tukey [5.42]. Algorithms
for domain-independent function finding [5.36] might be adapted to curve
bounding but are not considered here.
Finally, Section 5.7 discusses the role of the scientific method in the con-

text of experimental analysis of data and summarizes our observations about
curve-bounding rules.
We emphasize that this work represents a small initial investigation of

a potentially large research area. This paper only scratches the surface of a
related important methodological topic, namely how to perform experiments
on algorithms, and how to evaluate the confidence in our findings statistically.
Our analyses are far from complete, and we do not consider here many in-
teresting methodological and statistical questions, function classes, function
parameters, rule variations, or multivariate problems.
In specific examples, we mostly consider cases where it is of interest to

bound the complexity of algorithms for inputs of size n, using functions of the
single parameter n. Later sections emphasizing data analysis use the symbol
x in place of n, to refer to the “control parameter” in the experiment, but
again we assume that only one such control parameter is present. Issues of
experimentation with combinations of control parameters is outside the scope
of this paper.
Of course, many problems in experimental evaluation include combina-

tions of parameters (such as problem size n, graph density d, and algorithm
tuning parameter p). But these problems can sometimes be studied by vary-
ing each parameter in turn while holding others fixed.
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5.2 Difficulties with Experimentation

There is no question that experimental analysis of algorithms presents several
fundamental problems to the researcher. Some of the major difficulties are
surveyed in this section.

Too Many Inputs. Perhaps the most fundamental problem with algorith-
mic experimentation is that we can rarely test all possible inputs, even for
bounded input size, because there are usually exponentially (or infinitely)
many of them. In application-oriented research this problem may be miti-
gated by collections of test instances which are considered “typical”.2 For
example, there is a large class of oblivious algorithms where the execution
time only depends on a small number of parameters like the input size, for
example, matrix multiplication. Although many oblivious algorithms are easy
to analyze directly, experiments can sometimes help. Furthermore, there are
algorithmic problems with few inputs. For example, the locality properties of
several space filling curves were first found experimentally and then proven
analytically. Later it turned out that a class of experiments can be systemat-
ically converted into theoretical results valid for arbitrary curve sizes [5.30].
But in most cases there are far too many instances to allow exhaustive

testing. In these situations, our rich statistical understanding of random sam-
pling makes algorithm randomization and average case analyses most impor-
tant for experimentation. Randomization can be used to convert a hypothesis
about “all instances” into one about behavior “on average,” for which exper-
imental approaches are most suited. For example, every sorting algorithm
which is efficient on average can be transformed into an algorithm for worst-
case instances by permuting the inputs randomly. In this case, a few hundred
experimental trials with random inputs can give a reliable picture of the ex-
pected performance of the algorithm for inputs of a given size. On the other
hand, closed form analyses of randomized algorithms can be very difficult
to obtain. For example, the average performance of randomized Shellsort has
been open for a long time [5.38]. Section 5.3.3 presents an experimental study
of Shellsort.

Unbounded Input Size. Another problem with experiments is that we can
only test a finite number of input sizes. As a result, no inference about asymp-
totic behavior is reliable. For example, assume we observe that some sorting
algorithm needs an average of C(n) ≤ 3n logn comparisons3 for n < 106 ele-
ments. We cannot claim that C(n) ≤ 3n logn as a theorem, since quadratic
behavior might set in for n > 42 · 106. Here, the scientific method partially
saves the situation. We can formulate the hypothesis C(n) ≤ 3n logn, which
is scientifically sound since it can be falsified by presenting an instance of size
n with C(n) > 3n logn.
2 For example, a list with 23 collections of problem instances can be found under
http://mat.gsia.cmu.edu/Resources/Problem_Instances/

3 Throughout this paper log x stands for the base two logarithm log2 x.
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Note that not every sound hypothesis is a good hypothesis. For ex-
ample, we would be cowardly to change the above hypothesis to C(n) ≤
100000n logn, since it would be difficult to falsify it even if it later turns
out that the true bound is C(n) = n logn+ 0.1n log2 n. Issues like accuracy,
simplicity, and generality of hypotheses also arise in the natural sciences and
should not be obstacles to the use of the scientific method here.

O(·)-s are not Falsifiable. The next problem is that an asymptotic ex-
pression cannot be used directly in formulating a scientific hypothesis since
it could never be falsified experimentally. For example, if we claim that a
certain sorting algorithm needs at most C(n) ∈ O(n logn) comparisons it
cannot even be falsified by a set of inputs which clearly indicate quadratic
behavior, since we could always claim that this quadratic development would
stop for sufficiently large inputs. This problem can be solved by formulating
a hypothesis which is stronger than the asymptotic expression we really have
in mind. The hypothesis C(n) ≤ 3n logn used above is a trivial example. A
less trivial example is given in the study of Shellsort in Section 5.3.3.

Complexity of the Machine Model. Although the actual execution time
of an algorithm is perhaps the most interesting subject of analysis, this mea-
sure of resource consumption is often difficult to model by closed form ex-
pressions. Caches, virtual memory, memory management, compilers, and in-
terference from other processes all influence execution time in ways that are
difficult to predict.4 At some loss of accuracy, this problem can be solved by
counting the number of times a certain set of source code operations (which
cover all the inner loops of the program) is executed. This count often suffices
to capture the asymptotic behavior of the code in a machine-independent way.
For example, for comparison-based sorting algorithms it is usually sufficient
to count the number of key comparisons.

Finding Hypotheses. Except in very simple cases, it is almost impossi-
ble to guess exactly an appropriate formula for a worst case performance,
given only measurements, even when the investigated resource consumption
only depends on input size. For example, the measured function may be non-
monotonic but we are only interested in a monotonic upper bound. There are
often considerable contributions of lower order terms for small inputs. Indeed
our experience described in later sections shows that simple fitting methods
sometimes just won’t work, especially if we are interested in fine distinctions
like logarithmic factors.
In some cases the scientific method can help to mitigate this difficulty

by applying problem-specific information to the study. We may be able to
handle a related or simplified version of the system analytically, or we can
4 Remember that the above is also an argument in favour of doing experiments
because the full complexity of the hardware is difficult to model theoretically.
We only mention it as a problem in the current context of inducing asymptotic
expressions from experiments.
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make “heuristic” steps in a derivation of a theoretical bound. Although the
result is not a theorem about the target system, it is good enough as a
hypothesis about its behavior in the sense of the scientific method. Section
5.3 gives several examples of this powerful approach which so far seems to be
underrepresented in algorithmics.

5.3 Promising Examples

Our first example in Section 5.3.1 can be viewed as the traditional use of ex-
periments as a method to generate conjectures on the behavior of algorithms
— but it has an additional interpretation in the sense that experiment plus
theory (on a less attractive algorithm) yields a useful hypothesis. Section 5.3.2
gives an example in the same category but using a less well known approach.
Rather than simplifying the algorithm, we simplify the analysis by mak-
ing simplifying assumptions (independence) in the middle of the derivation.
The resulting bound has the status of a theory in the sense of the scientific
method and is then validated by simulation. Sections 5.3.3 and 5.3.4 touch
on the difficult question of how to use experiments to learn something about
the asymptotic complexity of an algorithm. Finally Section 5.3.4 is a good
example how experiments can suggest that an analysis can be sharpened.

5.3.1 Theory with Simplifications:
Writing to Parallel Disks

Consider the following algorithm, EAGER, for writing D randomly allocated
blocks of data to D parallel disks. EAGER is an important ingredient of a
general technique for scheduling parallel disks [5.35]. We maintain one queue
Qi for each disk. The queues share a buffer space of size W ∈ O(D). We
first put all the blocks into the queues and then write one block from each
nonempty queue. When the sum of the queue lengths exceeds W , additional
write steps are invested. We have no idea how to analyze this algorithm.
Therefore, in [5.35] a different algorithm, THROTTLE, is proposed that only
admits (1− ε)D blocks per time step to the buffers. Then it is quite easy to
show using queuing theory that the expected sum of the queue lengths is
close to D/(2ε). Further, it can be shown that the sum of the queue lengths
is concentrated around its mean with high probability so that a slightly larger
buffer suffices to make waiting steps rare.5

Still, in many practical situations EAGER is not only simpler but also
somewhat more efficient. Was the theoretical analysis futile and misguided?
One of the reasons why we think the theory is useful is that it suggests a nice
explanation of the measurements shown in Fig. 5.1. It looks like 1−D/(2W )

5 The current proof shows that W ∈ O(D/ε) suffices but we conjecture that this
can be sharpened considerably using more detailed calculations.
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Fig. 5.1. Inefficiency (i.e., 1−efficiency) of EAGER. N = 106 · D blocks were
written

is a lower bound for the average efficiency of EAGER and a quite tight one
for largeD. This curve was not found by fitting a curve but by the theoretical
observation that algorithm THROTTLE with ε = D/(2W ) would have buffer
requirement about W .
More generally speaking, the algorithms we are most interested in might

be too difficult to understand analytically. In such cases it makes sense to
analyze a related and possibly inferior algorithm, and to use the scientific
method to develop theoretical insights about the original algorithm. In the
next Section we see that rather than simplifying the algorithm we can also
simplify the analysis and achieve a similar effect — a theory in the sense of
the scientific method.

5.3.2 “Heuristic” Deduction: Random Polling

Let us consider the following simplified model for the startup phase of random
polling dynamic load balancing [5.21, 5.9, 5.34] which is perhaps the best
available algorithm for parallelizing tree shaped computations of unknown
structure: There are n processing elements (PEs) numbered 0 through n− 1.
At step t = 0, a random PE is busy while all other PEs are idle. In step t, a
random shift k ∈ {1, . . . , n− 1} is determined and the idle PE with number
i asks PE i+ k mod n for work. Idle PEs which ask idle PEs remain idle; all
others are busy now. How many steps T are needed until all PEs are busy?
A trivial lower bound is T ≥ log n steps since the number of busy PEs can
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Fig. 5.2. Number of random polling steps to get all PEs busy: Hypothesized upper
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at most double in each step. An analysis for a more general model yields an
E[T ] ∈ O(log n) upper bound [5.34].
We will now argue that there is a much tighter upper bound of E[T ] ≤

logn + log lnn + 1. We start with a theoretical analysis and get stuck half
way. We then make a simplifying assumption (independence) that allows us to
complete the analysis. The hypothesis generated in this way is then validated
experimentally.
Define the 0/1-random variable Xik to be 1 iff PE i is busy at the be-

ginning of step k. For fixed k, these variables are identically distributed and
P [Xi0 = 1] = 1− 1/n. Let Uk =

∑
i<n Xik. We have

E(Uk) = E(
∑
i<n

Xik) =
∑
i<n

P [Xik = 1] = nP [Xik = 1].

Since the Xik are not independent even for fixed k, we are stuck with this
line of reasoning. However, if we (falsely) assume independence, we get

P [Xi,k+1 = 0] = P [Xik = 0]
∑
j 	=i

1
n− 1P [Xjk = 0] = P [Xik = 0]2,

and, by induction,

P [Xik = 0] = (1 − 1/n)2k ≤ e−2k/n.

Therefore, E(Uk) ≥ n(1−e−2k/n) and for k = logn+log lnn, E(Uk) ≥ n−1.
One more step must get the last PE busy.
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We have tested the hypothesis by simulating the process 1000 times for
n = 2j and j ∈ {1, . . . , 16}. Fig. 5.2 shows the results. On the other hand,
the measurements do exceed log n+ log lnn. We conjecture that our results
can be verified using a calculation which does not need the independence
assumption.

5.3.3 Shellsort

Shellsort [5.39] is a classical sorting algorithm which has been widely studied.
Given an increasing integer sequence of offsets hi with h0 = 1, the following
pseudo-code describes Shellsort.

for each offset hk in decreasing order do
for j := hk to n step hk do

x := data[j]
i := j − hk
while i ≥ 0 ∧ x <data[i] do

data[i+ hk] := data[i]
i := i− hk

od
data[i+ hk] := x

Despite its long history, Shellsort still poses several open problems. For ex-
ample, let T (n) denote the average number of key comparisons performed
by Shellsort for n inputs. It is unknown whether there is an offset se-
quence which yields a sorting algorithm with T (n) ∈ O(n log n) or even
one with T (n) ∈ o(n log2 n) [5.38, 5.18]. It is known that any algorithm with
T (n) = O(n logn) must use Θ(log n) offsets [5.18]. Previous experiments
with many carefully constructed offset sequences led to the conjecture that
no sequence yields T (n) close to O(n logn) [5.45].
Motivated by the successful use of randomness for sorting networks

[5.22, Section 3.5.4] where no comparably good deterministic alternatives
are known, we asked ourselves whether random offsets might work well for
Shellsort. For our experiments we used offsets which are the product of ran-
dom numbers. The situation now is more difficult than in Section 5.3.2 where
the theory gave us a very accurate hypothesis. Now we have little information
about the dependence of the performance on n. Still, we should put the little
things we do know into the measurements. First, by counting comparisons
we can avoid the pitfalls of measuring execution time directly. Furthermore,
we can divide these counts by the lower bound log(n!) ≈ n logn−n/ ln(2) for
comparison based sorting algorithms. The difficult part is to find an adequate
model for the resulting quotient plotted in Fig. 5.3. According to the conjec-
ture in [5.45] the quotient should follow a power law. In a semilogarithmic
plot this should be an exponentially growing curve. So this conjecture is not
a good model at least for realistic n (also remember that Shellsort is usually
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not used for large inputs). A sorting time of O(n loga n) for any constant
a > 1 would result in a curve converging to a straight line in Fig. 5.3. Indeed,
the curve gets flatter and flatter and its inclination might even converge to
zero.
We might be tempted to conjecture that T (n) = O(n log1+o(1) n). But

we must be careful here, because assertions like “T (n) = O(f(n))” or “the
inclination of g(n) converges to zero” are not experimentally falsifiable.

5.3.4 Sharpening a Theory: Randomized Balanced Allocation

Consider the following load balancing algorithm known as random allocation:
m jobs are independently assigned to n processing elements (PEs) by choosing
a target PE uniformly at random. Using Chernoff bounds, it can be seen that
the maximum number of jobs assigned to any PE is

lmax = m/n+O(
√
(m/n) logn+ logn)

with high probability (whp). For m = n,

lmax = Θ(log(n)/ log logn)

whp can be proven.
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load. In order to minimize artifacts of the random number generator, we have used a
generator with good reputation and very long period (219937 −1)[5.24]. In addition,
we have repeated some experiments with the Unix generator srand48 leading to
almost identical results

Now consider the slightly more adaptive approach called balanced random
allocation. Jobs are considered one after the other. Two random possible
target PEs are chosen for each job and the job is allocated on the PE with
lower load. Azar et al. [5.2] have shown that

lmax = O(m/n) + (1 + o(1)) log lnn

whp for m = n. Interestingly, this bound shows that balanced random al-
location is exponentially better than plain random allocation. However, for
large m their methods of analysis yield even weaker bounds than that for
plain random allocation. Fig. 5.4 shows that a simple experiment predicts
that lmax−m/n cannot depend much on m. Recently6 Berenbrink et al. [5.8]
have published a proof (using quite nontrivial arguments) that indeed,

lmax = m/n+ (1 + o(1)) log lnn.

Our experiments were done before the theoretical solution. For other ex-
amples, we could have picked one of the other open problems in the area of
balls into bins games. For example, Vöcking [5.43] recently proved that an
6 After our experiments were done.
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asymmetric placement rule for breaking ties can significantly reduce lmax for
m = n but nobody seems to know how to generalize this result for generalm.

5.4 Empirical Curve Bounding Rules

We now develop several heuristic rules for finding asymptotic trends in data
sets. To emphasize the general applicability of these techniques of data anal-
ysis, and to achieve some notational compatibility with related works in data
analysis, we use the symbol x rather than n to refer to the parameter that is
controlled during experimentation.
We begin with some notation and a precise specification of the prob-

lem. The cost of algorithm A is described by an unknown exact function
f(x), where x may denote problem size. An experiment produces a pair
of vectors X,Y such that Y [i] = F (X [i]); in cases with randomized in-
puts and/or randomized algorithms, the experiment produces X,Y such that
E(Y [i]) = f(X [i]) (that is, f is a function describing the average behavior of
the algorithm). By convention, the vector X is assumed to contain k distinct
nonnegative values arranged in increasing order.
The complexity class O(g(x)) denotes a set of functions: we have f(x) ∈

O(g(x)) if there exist positive constants cu, xu such that 0 ≤ f(x) ≤ cug(x)
for all x ≥ xu. Similarly, f(x) is in the set Ω(g(x)) if there exist positive
constants cl, xl such that 0 ≤ clg(x) ≤ f(x) for all x ≥ xl.
By convention, a complexity class is always labeled by the “simplest”

member of the set; thus while O(3x2 + 4x) is technically correct, we would
use O(x2) to denote this class. Throughout, g(x) and ḡ(x) are assumed to
be simple functions labeling complexity classes, while f(x) and f̄(x) may be
arbitrary functions. The bar notation denotes functions that are estimates,
and functions without bars denote (typically unknown) target functions.
Each heuristic rule takesX,Y , and reports a class estimator ḡ(x) together

with a bound type, either upper, lower, or close. Upper signifies a claim that
f(x) ∈ O(ḡ(x)), and lower signifies a claim that f(x) ∈ Ω(ḡ(x)). A rule will
report a bound of close when the data is “too close to call” with respect
to the upper/lower bound criteria being used. Usually this occurs when the
data is indeed very close to the estimate, but in some cases a close result is
returned because of some unexpected property of the data set.
An upper bound estimate O(ḡ(x)) is correct if in fact f(x) ∈ O(g(x)). A

correct upper bound is exact if it labels the smallest correct class that holds
the target function. Analogous definitions hold for lower bound estimates.
Some heuristics iteratively generate internal guess functions f̄(x) stopping
when come criteron is met and then reporting the corresponding estimate
ḡ(x) obtained from the leading term of f̄(x).
We consider the five strategies outlined below.

– The Guess-Ratio (GR) rule “guesses” a function f̄(x) and evaluates the
guess according to the apparent convergence of the ratios Y/f̄(X).
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– The Guess-Difference (GD) rule also guesses a function f̄(x), but evaluates
the differences f̄(X)− Y rather than ratios.

– The Power (PW) rule combines log-log transformation of X and Y , lin-
ear regression on the transformed data, and residuals analysis. Two varia-
tions PW3 and PWD are introduced that improve this method for curve-
bounding problems.

– The Box Cox (BC) rule combines a parametric transformation of Y values
with linear regression and residuals analysis.

– The Difference (DF) rule generalizes Newton’s divided difference method
for polynomial interpolation. The generalization ensures that the method
is defined and terminates for any data set.

Oracle Functions. In general, the rules can be viewed as interactive tools
or as offline algorithms. To accommodate both views, we describe the algo-
rithms in terms of a small set of oracle functions which decide, for example,
whether “residuals are concave upwards.” When the rules are used interac-
tively, a human provides the oracle values; when the rules are offline, simple
computations are used for each oracle function.

Trend(X, Y, cr). Returns a value indicating whether Y appears to be in-
creasing with X , decreasing, or neither. Our implementation compares the
correlation coefficient r, computed on X and Y , to a cutoff parameter cr
which is 0.1 by default.

Concavity (X, Y, s). This function performs a linear regression on X and
Y , smooths the residuals, and examines the signs of the smoothed residuals. It
returns “concave upward” if signs obey the regular expression (+)+(−)+(+)+
(at least one plus, followed by at least one minus, followed by at least one
plus); it returns “concave downward” if they obey (−)+(+)+(−)+; and oth-
erwise the function returns “neither.” The parameter s can be used to ad-
just the smoothing operation; the default low setting produces “less smooth”
residuals and more frequent “neither” results.

DownUp( X, Y, s ). The DownUp oracle examines smoothed Y values to
determine whether Y appears to be first decreasing and then increasing within
its range. If successive differences in smoothed Y values obey the regular
expression (−)+(+)+, the function returns True; otherwise it returns False.
The default low setting of parameter s (identical in purpose to the one for
Concavity) produces less smooth values and more frequent False results.

NextCoef(f, direction, cstep) and NextOrder(f, direction, estep).
Rules that iterate over several guesses require an oracle to supply the next
guess. Our implementation constructs functions f(x) = axb for positive ra-
tionals a and b. NextCoef changes a according to direction (up or down) and
the cstep size. If a decrement of size cstep would give a negative coefficient,
then cstep is reset to cstep/10 before decrementing. NextOrder changes the
exponent b according to the estep size. In our tests the default estep is .001
for all but one rule, and the initial cstep value is .01.
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The remainder of this section presents a “justification” for each rule in
the form of a family of functions for which the rule is guaranteed to produce
correct results.

5.4.1 Guess Ratio

To justify the Guess Ratio (GR) rule, let the set FGR contain functions of
the form f(x) = a1x

b1 + a2x
b2 + · · · + atx

bt , with rationals ai positive, and
rationals bi such that b1 > 0, bi ≥ 0, and bi > bi+1. Let the guess function be
of the form f̄(x) = xb. Then the ratio f(x)/f̄(x) has the following properties:
(1) When f1(x) ∈ O(f̄(x)), the ratio decreases to a nonnegative constant as
x increases; (2) When f1(x) �∈ O(f̄(x)) the ratio eventually increases and has
a unique minimum point at some location xr. If xr > 0, then the ratio shows
an initial decrease followed by an eventual increase. These properties are
established by an application of Descartes’ Rule of Signs [5.44] which (when
extended from polynomials to functions in FGR having rational exponents
and coefficients) bounds the number of sign changes in the derivative of the
ratio.
The Guess Ratio rule exploits this property by guessing a function f̄(x)

and examining the ratio obtained for the finite sample X,Y . If a plot of X vs
Y/f̄(X) shows an eventual increasing trend (perhaps with an initial decrease
at low X values), then case (2) must hold. If only a decrease is observed in
the plotted values, then cases (1) and (2) cannot be distinguished.
The Guess Ratio rule begins with a constant guess function f̄(x) = x0,

and increments the exponent b using the NextOrder oracle, iterating until
the ratios Y/f̄(X) do not appear to eventually increase. The Trend oracle
is used to determine whether the ratios increase. The largest guess f̄ ′(x)
for which an eventual increase is observed is reported as a “greatest lower
bound” on the target f(x): thus this rule always generates a lower claim that
f(x) = Ω(ḡl(x)), using the estimate ḡl(x) = f̄ ′(x).
When f(x) ∈ FGR and k ≥ 2, the correctness of GR can be guaranteed

simply by defining “eventual increase” as Y [k − 1] < Y [k] (recall that k is
the size of X). However our implementation uses the Trend oracle (which
calculates the correlation coefficient) for this test because of possible random
noise in Y . Thus for any data set (X,Y ) and for our Trend oracle, the rule
must eventually terminate, but cannot be guaranteed correct.

5.4.2 Guess Difference

The Guess Difference (GD) rule also iterates over several guess functions
f̄(x), evaluating differences f̄(X) − Y rather than ratios. It produces an
upper rather than a lower bound estimate.
This rule is guaranteed correct for the set FGD which contains functions

f(x) = cxd + e where c, d and e are positive rationals, by the following
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argument. Let the guess function have the form f̄(x) = axb, and consider
the difference curve f̄(x) − f(x). When f̄(x) �∈ O(f(x)), this curve must
eventually increase (when x is “large enough”), and it must have a unique
minimum at some location xd. Also, note that xd is inversely related to the
coefficient a in the guess: for large a the difference curve increases everywhere
(xd = 0), but for small a there might be an initial decrease at small x. In the
latter case we say the curve has the DownUp property.
The GD rule starts with an upper bound guess f̄(x) = axb and searches for

a difference curve having the DownUp property by adjusting the coefficient
a. If a DownUp curve is found, the rule concludes that f̄(x) overestimates the
order of f(x), so it decrements the exponent b and tries adjusting a again.
The lowest b for which the rule finds a DownUp curve is reported as a “least
upper bound” found. Thus if the rule stops at f̄ ′(x) = a′xb

′
, it reports an

upper bound f(x) = O(ḡu(x)) with ḡu(x) = xb
′
.

Using an analysis similar to that for GR, we can show that when f(x) ∈
FGD and X is fixed and when k ≥ 4, then there exists an a such that
f̄(X)− f(Y ) will have the DownUp property. If the rule is able to find the a
that produces a DownUp curve in its finite sample, then the upper bound it
returns must be correct. In our implementation, if the rule is unable to find
an initial DownUp curve within preset limits on iteration, the rule stops and
reports the original guess provided by the user.
Note that Guess Difference rule cannot be guaranteed correct for functions

from FGR (defined for the Guess Ratio rule), because these functions may
have several non-constant terms. If t is the number of terms in f(x), and if
f̄(x) over-estimates the order of f(x), then the difference curve f̄(x)−f(x) can
have at most t− 1 local minimal points (down-up-down-up-down-up) before
its eventual increase. A DownUp curve in the plot for the finite sample may
only be some initial fluctuation at small x, and it is not necessarily the case
that f̄(x) overestimates f(x).

5.4.3 The Power Rule

Power Rule (PW) modifies a standard data analysis technique for fitting
curves to data. Suppose that the set FP contains functions f(x) = cxd for
positive rationals c and d. Let y = f(x). Applying the logarithmic transfor-
mation x′ = ln(x) and y′ = ln(y), we obtain y′ = dx′ + c. Now y′ is linear in
x′, and the slope obtained by a linear regression fit of x′ to y′ is equal to d,
the exponent in the original function.
The Power Rule applies this log-log transformation to the data sets X and

Y and then reports d, the slope of a linear regression fit on the transformed
data. Since we are interested in bounds rather than fits, the Concavity oracle
is applied to residuals from the linear regression fit. If the residuals appear to
be concave upward, then the rule concludes that the data is growing faster
than the fit, and returns a “lower” bound claim. If the residuals are concave
downwards, the the rule returns “upper.” If the residuals do not meet the
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convexity criteria for these two claims, the oracle returns “neither” and the
Power Rule returns “close.”
If Y = f(X) and f(X) ∈ FP then the Power rule finds the exponent d

exactly. If Y is a random variate such that Y = f(X) ·ε and the random noise
component ε obeys standard assumptions of independence and lognormality,
then confidence intervals on the estimate of d can be derived by standard
techniques (see [5.33] for details).

High-End Power Rule (PW3). When f(x) contains low-order terms
(such as axb + e), the log-log transformed points do not lie on a straight
line. In this case, a linear regression using only the transformed points at the
j highest X values might give a better asymptotic bound than one using all
k points. The PW3 variation on the Power Rule applies the Power rule to
the three highest data points corresponding to X [k− 2], X [k− 1], and X [k].

Power Rule with Differences (PWD). The differencing variation on the
Power rule attempts to straighten out plots under log-log transformation by
removing constant terms. This variation can be applied when theX values are
chosen such that X [i] = ∆ ·X [i−1] for a positive constant ∆ (for example, if
∆ = 2 then the X values are obtained by successive doubling. This variation
applies the Power rule to successive differences in adjacent Y values, rather
than to Y values alone.
To justify this rule, suppose FPWD contains f(x) = cxd + e where c, d

and e are positive rationals, and let Y = f(X). Set Y ′[i] = Y [i + 1] − Y [i]
and X ′[1..k − 1] = X [1..k − 1].
Then we have

Y ′[i] = f(X [i+ 1])− f(X [i])
= cX [i+ 1]d + e− cX [i]d − e

= c(∆X [i])d − cX [i]d

= c(∆)dX [i]d − cX [i]d

= X [i]d(c∆d − c)

Now Y ′ = c′X ′d: that is, the exponent is the same as in the original, there
is a new coefficient, and the constant e has been removed. The Power rule is
then applied to Y ′ and X ′ in order to bound the exponent d. If f(x) ∈ FPWD,
Y = f(X) and k > 4, then the PWD rule is guaranteed to find d exactly.
Note that it is straightforward to extend this result to show that taking

differences on Y twice will remove a logarithmic term.

5.4.4 The BoxCox Rule

To generalize the power rule, a standard approach in curve-fitting is to find
transformations on Y or on X , or both, that produce a straight line in the
transformed scale, and then to invert the transformation to obtain an estimate
of the original curve. For example, if Y = X2, then a plot of X vs

√
Y would
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produce a straight line, as would a plot of X2 vs Y . One difficulty with the
general approach is that it can be hard to find a good statistic to compare
the quality of different transformations because the transformation changes
the scale of the data points.
The Box-Cox ([5.1, 5.10]) curve-fitting method applies a transformation

on Y that is parameterized by λ, and defines a “straightness” statistic that
permits comparisons of transformations across different parameter levels. The
transformation is as follows:

Y (λ) =




Y λ−1
λȲ λ−1 if λ �= 0

Ȳ ln(Y ) if λ = 0

where Ȳ is the geometric mean of Y , equal to exp(mean(ln (Y ))). The
“straightest” transformation in this family minimizes the Residual Sum of
Squares (RSS) statistic which is calculated from X and Y λ.
Our BC rule iterates over a range of guesses f̄(x) = xb generated by the

NextOrder oracle (with the range specified by the user). The rule evaluates
Y (λ) with λ = 1/b at each iteration, and the b′ that produces the minimum
RSS statistic is returned as the complexity class estimate ḡ(x) = xb

′
. The

Concavity oracle is then applied to residuals from the linear regression fit
under the transformation, to determine the type of bound claimed (upper,
lower, close).
When f(x) = FPW , Y = f(X), k > 2, and when NextGuess oracle

includes f(x), this rule is guaranteed to finds the function exactly. With
standard normality assumptions about an additive random error term, it is
possible to calculate confidence intervals for the estimate on exponent b: see
[5.1] or [5.10] for details.

5.4.5 The Difference Rule

The Difference heuristic extends Newton’s divided difference method for
polynomial interpolation (see [5.40] for an introduction) This method cal-
culates Y 1 = diff(Y )/diff(X), where diff(Y ) denotes the differences be-
tween successive values in Y (and is therefore of length k − 1), and X1 =
X [1 . . . k−1]. If after d such calculations the resulting Y d values are all equal,
then we can conclude that f(x) is a polynomial of degree d.
The extension used here applies when when Y contains random noise and

nonpolynomial terms. The method iterates numerical differentiation on X
and Y until the data “appears to be non-increasing,” according to the Trend
oracle. The number of iterations d required to obtain this condition provides
an upper bound guess ḡ(x) = xd. If f(x) is a positive increasing polynomial
of degree d, and if k > d, and Y = f(X), then this method is guaranteed
correct. Much is known about numerical robustness, best choice of design
points, and (non)convergence when k ≤ d.
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5.4.6 Two Negative Results

A basic requirement is that a curve-bounding heuristic be internally con-
sistent. For example, it should not be possible to reach the contradictory
conclusions “Y is growing faster than X2” and “Y is growing more slowly
than X2” on the same data set, merely by applying variations on the heuris-
tic rule. Surprisingly, two plausible approaches included in our initial study
turned out to have exactly this failure.
The first, perhaps the most obvious approach to the problem of bounding

empirical curves, is to use general (nonlinear) regression to fit a multi-term
function f̄(x) to the data set. The leading term of f̄(x) would provide the
complexity class estimate, and the curvature of the residuals from regression
analysis would provide the upper/lower bound claim.
Several general regression methods are known in the literature. These

methods can be viewed as simple types of heuristic search, where a “step”
from the current model f̄i(x) to the next involves the addition or removal (or
both) of an additive term, and the objective function (to be minimized) is a
goodness-of-fit statistic such as the residual sum of squares (RSS).
In preliminary tests we found the RSS to be woefully inadequate for curve-

bounding problems, in the sense that the statistic was quite oblivious to how
close the leading term of f̄(x) was to that of true function f(x). Nor were we
able to discover a substitute statistic that could distinguish between a variety
of guesses having different leading terms. As a result, when experimenting
with this general regression method there was no sense of “convergence”
towards a correct answer, and our “final” results were primarily artifacts of
the stepping rule applied during the heuristic search. It seems an interesting
problem for future research to determine whether general regression can be
adapted to the curve-bounding problem.
The second approach is based on Tukey’s [5.42] “ladder of transformation”

technique, by which the X or Y values (or both), are transformed according
to functions along the scale

. . . x−1, x−1/2, log(x), x1/2, x1, x2 . . . ,

until the transformed data appears as a straight line. The best transformation
on X , or inverse of the best transformation on Y , produces the asymptotic
bound g(x).
We implemented two versions of this approach, one which systematically

applies transformations to Y , and one which transforms X . The straightness
of each transformation was assed by the RSS statistic with respect to a linear
regression on the transformed data; the upper/lower bound was determined
by the Concavity oracle (or by visual inspection).
Our preliminary investigation showed that this approach frequently gives

contradictory results depending on whether the transformation is applied
to Y or X . The problem is that the correct transformation for the leading
term of f(X) can be difficult to find when a large (or even moderately-sized)
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second-order term is present, and the importance of the second-order term
varies considerably depending on whether Y or X is transformed. In our
early tests these two rules frequently gave contradictory bound claims, such
as both Ω(x2.2) and O(x1.8).
As a result of these early failures, these two approaches were abandoned

prior to the developement of the designed experiments, and are not consid-
ered further here. Note that the BoxCox curve-fitting method can be seen
as a formalization of Tukey’s transformation ladder (restricted to Y trans-
formations), and some of the difficulties that we observe for BC may have
similar foundation.

5.5 Experimental Results

The rules have been implemented in the S language [5.5], which is supported
by the Splus software package designed for statistical and graphical computa-
tions. The main set of experiments were carried out on a Sun SPARCstation
ELC, using functions running within Splus; some supporting experiments
were conducted using the Lisp-based CLASP statistical/graphics package.
Timing statistics would be very misleading in this context and are not re-
ported in detail.
Roughly, however, the three Power rules required a few microseconds, and

two of the iterative rules (Guess Ratio, BoxCox) usually took no more than
a few seconds per trial (each trial corresponding to around 20-50 iterations
of guess function generation). The Guess Difference rule iterates over two
parameters (e and c), and was significantly slower than the other iterative
rules; therefore a coarser estep value in the NextOrder oracle (0.01 instead of
0.001) was adopted to produce comparable wall clock times for this heuristic.

5.5.1 Parameterized Functions

The first experiment uses constructed functions f(x) = axb+cxd, with b > d,
with a positive, and with no randomization. To illustrate the sensitivity of
the rules to low-order terms that may dominate at small x, this experiment
varies the relative magnitudes of a to c and of b to d. Here the input vector
X is small, containing powers of two ranging between 16 and 128.
Note that all of the successful examples in Section 5.3 use much larger

problem sizes than are presented here. At any given maximum problem size,
any curve-bounding rule will have no difficulty detecting asymptotic trends
on “easy” functions having b >> d and a > c. Similarly, any curve-bounding
rule will fail on “hard” functions with b ≈ d and/or a < c. The goal of this ex-
periment is to “stress” the rules and find the limits of successful applicability
by using and difficult test functions for the given problem sizes.
To that end, the parameter values used in this experiment were selected

(from the enormous space of possible combinations) after several weeks of
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informal testing in order to locate the boundaries between easy and hard
functions and problem sizes vfor these rules. Each parameter is allowed to
vary within a range that causes some rules to move from success to failure.
Curve-bounding rule that fail here will also tend to fail on harder functions
and/or smaller problem sizes.
The exponent b takes three values [0.2, 0.8, 1.2]. Our initial exploration

suggested that functions with exponents above two are generally quite easy
to bound. Also, many open problems of interest to algorithm analyzers involve
functions with exponents below two (see Section 5.3). Non-integer exponents
were chosen here to avoid “lucky guesses” in our parallel tests using human
oracles (since people tend to start guessing with integers). Similarly, the fixed
coefficient a = 3 was chosen because people tend to guess one and ten first.
For each b value the second exponent d is set to [0, 0.2, b−0.2], subject to

the restriction that d < b. The zero provides a constant second term, the 0.2
gives a second term which is “small” compared to b, and the third exponent
is “near” b. For d = 0, the constant c is set to 104, and when d > 0 the
coefficient c takes values from [1,−1, 104] (small, negative, and large).
Figure 5.5 presents raw results from an experiment using all combinations

of b, c, and d described above, plus three extra tests identified as functions
1, 2, and 11 (to illustrate some observations made below). In function 11 the
constant 106 is added to ensure that all y values are positive, because some
rules cannot handle negative y values.
The table shows the leading exponents that were returned by the rules. On

functions 1 through 3, the correct exponent is 0.2; on functions 4 through 11 it
is 0.8; and on functions 12 through 17 the exponent is 1.2. The notations (l, u)
indicate the type of bound reported by the rule, either lower or upper. These
numerical results have been rounded to two decimal places – lower bounds
were rounded down, and upper bounds were rounded up. An underline marks
a bound that is incorrect. A *marks a case where the heuristic failed to return
an answer, usually because of lack of convergence.
Many intriguing observations arise.
The Guess Ratio (GR) rule, possibly the most widely-used curve-bounding

technique in the folklore, performs surprisingly poorly. While it is frequently
correct and close, it never dominates the three Power rules, and it always
fails on functions having negative second terms (6, 9 and 16), even when the
magnitude of the second term is small. This rule begins with a low guess
function and iterates, increasing guesses, until the Trend oracle reports the
ratio is “not increasing.” With a negative second order term, the true func-
tion approaches its asymptote from above, which fools the oracle. A more
sophisticated termination test might reduce this problem; but on the other
hand we note in Section 5.6.1 that using a human to provide the termination
test gives worse results in general.
Note that GR tends to “track” large positive second terms, producing

correct, but less tight bounds, when the second term dominates the data.
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Function GR GD PW PW3 PWD BC DF
1 3x0.2 + 1 0.17l 0.24u 0.17l 0.17l 0.20u 0.17l 1u
2 3x0.2 + 102 0.01l 0.24u 0.01l 0.01l 0.20l 0.01l 1u
3 3x0.2 + 104 0.00l 0.24u 0.00l 0.00l 0.20l * 1u
4 3x0.8 + 104 0.00l * 0.00l 0.00l 0.80l * 1u
5 3x0.8 + x0.2 0.77l * 0.77l 0.78l 0.79l 0.79l 1u
6 3x0.8 − x0.2 0.82l * 0.83u 0.82u 0.81u 0.81u 1u
7 3x0.8 + 104x0.2 0.20l * 0.20l 0.20l 0.20l 0.20l 1u
8 3x0.8 + x0.6 0.77l * 0.77l 0.77l 0.77l 0.77l 1u
9 3x0.8 − x0.6 0.83l 0.88u 0.85u 0.84u 0.83u 0.81l 1u
10 3x0.8 + 104x0.6 0.60l * 0.60l 0.60l 0.60l 0.60l 1u
11 3x0.8 − 104x0.6

+106 -0.01l * -0.06u -0.09u * * 0u
12 3x1.2 + 104 0.03l 1.3u 0.03l 0.05l 1.2l * 2u
13 3x1.2 + x0.2 1.18l 1.22u 1.18l 1.19l 1.19l 1.2u 2u
14 3x1.2 + 104x0.2 0.21l * 0.21l 0.22l 0.26l 0.23l 1u
15 3x1.2 + x1 1.17l 1.3u 1.17l 1.17l 1.17l 1.18u 2u
16 3x1.2 − x1 1.23l 1.27u 1.25u 1.24u 1.24u 1.22l 2u
17 3x1.2 + 104x1 1.00l * 1.00l 1.00l 1.00l 1.0l 1u

Fig. 5.5. Parameterized nonrandom functions. The numbers indicate the leading
exponents returned by the rules. The notations l, u, indicate whether a lower or
upper bound was returned. These numbers have been rounded to two decimal
places – lower bounds were rounded down and upper bounds were rounded up. An
underline marks a bound that is incorrect. The starred entries (*) mark cases where
the rule failed to return a result

On functions 1, 2, and 3, for example, the bound actually decreases as the
constant term becomes more important. Similarly, functions 3, 4, and 12 have
the same constant second term, and in these three cases the bound returned
by GR fails to follow the leading exponent. Finally, notice that performance
deteriorates with respect to the function pairs (5 and 7), (13 and 14), and
(15 and 17), which differ only in the coefficient on the second term.
The Guess Difference (GD) column contains several starred entries that

mark cases where the rule failed to find an initial DownUp curve. In cases it
returned the user-supplied starting guess, which was either 1x1 (functions 1
through 11) or 1x2 (functions 12 through 17). It appears that the performance
of GD is quite sensitive to the choice of initial guess and step sizes: further
exploration here suggests that the failures in functions 4 through 11, for
example, are caused by an initial guess 1x1 that is too close to the true
function 3x0.8. A higher initial guesses does allow the rule to get started and
to find a tighter bound. Function 14 represents a different kind of failure – in
this trial the GD routine was canceled after about 60 minutes of processing, at
which time it was working on a guess of 1502.2x0.56, approaching the second
order term from above.
However, when GD is able to get started, its estimates are surprisingly

tight – much better than other rules in some cases. GD shows less sensitivity
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to large second terms than does GR, but the rule is not impervious to second-
order interference, as function 14 indicates.
The Power rules are close to one another, and also surprisingly close to GR

in performance. However unlike GR, the three Power rules remain correct on
functions 6, 9 and 16 (with negative second terms) by switching from “lower”
to “upper” bound claims. Both PW3 and PWD give slightly tighter bounds
than PW. Not only does PWD successfully eliminate the constant terms,
producing exact bounds in functions 1–4 and 12, but it is slightly better than
PW and PW3 even when the second term is not constant.
The BC rule returns bounds similar to those for GR and the Power rules.

This rule provides very competitive bounds when it works, but it fails to
converge on functions 3, 4, 11, and 12. These functions have a very large con-
stant as a second term: it turns out that the failure of BC here is an intrinsic
property of the λ transformation. That is, if the data is nearly constant, then
the “straightest” transformation, having minimum RSS value, is obtained by
the transformation Y 1/b with b = 0. The rule iterates towards ever-smaller b
values until the calculation of 1/b produces a numeric error.
Large increasing second terms (functions 7, 10, 14, 17) present no such

termination problems for BC, although the rule does tends to track the second
term. On functions 9, 15, and 16 the bound is incorrect although the estimate
is close to those obtained by other rules. This appears to be due to interactions
between the λ transformation and our Concavity function.
As is the case with PWD, the differencing operation performed by the

DF rule eliminates the effect of large constant terms. Recall that this rule
can only return integer exponents, which are often correct but rarely close to
the selected functions. This rule fails on functions 11, 14, and 17.
Function 11 is disasterous for all the rules because the large negative sec-

ond term causes Y to be decreasing within its range. As a general rule, these
rules do not work well on functions that are decreasing or even temporarily
decreasing within their range.

Increasing the Largest Problem Size. The obvious remedy to the prob-
lem of a dominant second-order term is to use larger problem sizes. The
second experiment uses functions identical to those of the previous section,
but X takes values at powers of two in the range 8 . . . 256 rather than 8 . . . 128
thereby doubling the largest problem size.
The results in Figure 5.6 are very similar to those in in the previous

chart, suggesting that in general the rules respond very slowly to changes in
the largest input values. In particular, doubling the largest problem size has
very little effect on the bounds returned by Guess Ratio and the three Power
Rules. The observed changes in estimates were generally only in the third or
higher decimal places, and incorrect bounds remain incorrect.
The Guess Ratio rule could be made more responsive to changes in prob-

lem size if a different Trend oracle were used to provide the stopping condi-
tion: instead of calculating the correlation coefficient, an oracle that concen-
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Function GR GD PW PW3 PWD BC DF
1 3x0.2 + 1 0.17l 0.23u 0.17l 0.17l 0.20u 0.18l 1u
2 3x0.2 + 102 0.01l 0.23u 0.01l 0.01l 0.20l 0.01l 1u
3 3x0.2 + 104 0.00l 0.23u 0.00l 0.00l 0.20l * 1u
4 3x0.8 + 104 0.00l 0.83u 0.00l 0.01l 0.80l 0.00l 1u
5 3x0.8 + x0.2 0.77l 0.82u 0.77l 0.78l 0.79l 0.79l 1u
6 3x0.8 − x0.2 0.82l 0.83u 0.83u 0.82u 0.81u 0.81u 1u
7 3x0.8 + 104x0.2 0.20l * 0.20l 0.20l 0.20l 0.20l 1u
8 3x0.8 + x0.6 0.77l 0.80u 0.77l 0.77l 0.77l 0.78c 1u
9 3x0.8 − x0.6 0.83l 0.85u 0.84u 0.83u 0.83u 0.82c 1u
10 3x0.8 + 104x0.6 .60l * 0.60l 0.60l 0.60l 0.60l 1u
11 3x0.8 − 104x0.6

+106 -0.01l * -0.07u -0.15u * * 0u
12 3x1.2 + 104 0.06l 1.22u 0.05l 0.11l 1.20l * 2u
13 3x1.2 + x0.2 1.19l 1.22u 1.18l 1.19l 1.19l 1.20u 2u
14 3x1.2 + 104x0.2 0.22l * 0.21l 0.23l 0.29l 0.25l 1u
15 3x1.2 + x0.8 1.17l 1.20u 1.17l 1.18l 1.18l 1.19u 2u
16 3x1.2 − x0.8 1.22l 1.24u 1.24u 1.23u 1.23u 1.21l 2u
17 3x1.2 + 104x0.8 0.80l * 0.80l 0.80l 0.80l 0.80c 1u

Fig. 5.6. Doubling the largest problem size. The numerical values show the leading
exponent returned by the rule. The notations l, u, c, indicate the type of bound
reported by the rule, either lower, upper, or close. These results are rounded to
two decimal places: lower bounds are rounded down, upper bounds are rounded up
and close bounds are rounded to the nearest decimal. An underline marks a bound
that is incorrect. A * marks a rule that failed to return an answer

trates on the high end of the data set might be more successful here. It is
surprising that PW3 does not respond much to the change in problem size,
because only the highest three data points are checked each time. One would
expect the new point to have much greater leverage for this rule.
The greatest improvement is found in the Guess Difference (GD) rule on

functions 4 through 9 (excepting 7). In the previous experiment the rule failed
to find an initial DownUp curve at all—now the rule is able to find an initial
curve, and iterate to find upper bounds within 0.05 of the true exponent.
The BC rule also shows some very slight improvement: in two cases the rule
produces close bound claims where previously the claim had been incorrect.
It is a problem for future research to how best to design rules that respond

to significant changes in problem sizes. For now, it remains important in
any algorithmic experiment to obtain results using the largest problem sizes
possible, especially when the underlying function has low exponents.

Adding Random Noise. The previous two experiments use functions with
no random noise in the data. In the third experiment we add a random term
to three functions (1, 5, and 13) that were easy for all rules, to learn how
rule performance degrades with increased variance. We let Y = f̄(X) + εi
with i = 1, 2, 3. The random variates εi are drawn independently from a
normal distribution with mean 0 and standard deviation set to constants 1
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(i = 1) and 10 (i = 2), and to the function means f̄(X [j]) (i = 3). We ran
two independent trials for each i, in order to check for spurious positive and
negative results. A table of results appears in Figure 5.7.
Not surprisingly, the quality of results returned by all rules degrades as

dramatically as random variation increases. The replication of tests in each
category demonstrates that many correct bounds are in fact spurious. Con-
versely, of course, rule performance improves when variance in the data de-
crease: This is good news for experimentors because is often possible to reduce
variance in experimental data, either by increasing the number of trials or
by applying one of several variance reduction techniques known in the liter-
ature (see [5.25]). Note that variance is less of a problem when the first term
exponent is large enough.
The GR rule responds strangely to random data, returning negative

bounds and lower bounds of 2.98 and even 25.7 [sic] on these functions. Not
surprisingly, PW3 is frequently wrong – when random variation is present,
it seems wise to make use of all the data, rather than just part of it. As

Function GR GD PW PW3 PWD BC DF
3x0.2 + 1 0.173l 0.23u 0.17l 0.17l 0.2c 0.18l 1u
3x0.2 + 1 + ε1 0.12l * 0.15c -0.00u 0.05u 0.90u 1u
3x0.2 + 1 + ε1 0.10l * 0.10c 0.34u -0.02l 0.40u 1u
3x0.2 + 1 + ε2 25.7l 0.57u 0.97u 0.67u -0.5c * 1u
3x0.2 + 1 + ε2 0.90l * 0.63c 0.40l 0.19l * 2u
3x0.2 + 1 + ε3 -0.1l * -0.01c -0.55u 0.93l 0.41c 0u
3x0.2 + 1 + ε3 -0.01l * -0.05c -0.34l 0.03c 1.00c 0u
3x0.8 + x0.2 0.77l 0.82u 0.77l 0.78l 0.79l 0.79l 1u
3x0.8 + x0.2 + ε1 0.77l 0.83u 0.77l 0.77l 0.80u 0.78c 1u
3x0.8 + x0.2 + ε1 0.76l 0.78u 0.76c 0.81u 0.77l 0.81c 1u
3x0.8 + x0.2 + ε2 0.71l * 0.75c 0.77u 0.78c 0.69c 1u
3x0.8 + x0.2 + ε2 0.69l * 0.68c 0.73l 0.89c 0.81c 1u
3x0.8 + x0.2 + ε3 1.50l * 1.34c 1.03u 0.91u * 2u
3x0.8 + x0.2 + ε3 1.08l * 1.01u -0.35u 1.98u * 1u
3x1.2 + x0.2 1.19l 1.22u 1.18l 1.19l 1.19l 1.20u 2u
3x1.2 + x0.2 + ε1 1.18l 1.22u 1.18l 1.19l 1.21u 1.20c 2u
3x1.2 + x0.2 + ε1 1.18l 1.22u 1.18l 1.19l 1.19l 1.20c 2u
3x1.2 + x0.2 + ε2 1.18l 1.22u 1.17l 1.20u† 1.19u 1.19c 2u
3x1.2 + x0.2 + ε2 1.15l 1.30u 1.14l 1.18l 1.22c 1.22c 2u
3x1.2 + x0.2 + ε3 0.10l 1.99u 1.25l 2.20l 1.83l * 1u
3x1.2 + x0.2 + ε3 2.98l 2.00u 1.58u 0.39u 0.94l 2.59u 1u

Fig. 5.7. Adding random noise. The numbers show the exponents returned by the
rules. The notations l, u, c, indicate the type of bound reported by the rule, either
lower, upper, or close. These results are shown rounded to two decimal places:
lower bounds are rounded down, upper bounds are rounded up, and close bounds
are rounded to the nearest decimal. The † marks a case where rounding changed
an originally incorrect upper bound (1.194u) to a correct one (1.2u). An underline
marks a bound that is incorrect. The starred entries (*) mark cases where the rule
failed to return a bound
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variance in Y increases, the Power and the BoxCox rules more frequently re-
turn claims of close. We do not know how to interpret these results to obtain
bounds (upper or lower) on function growth; therefore these rules may be
less useful for curve-bounding problems when large variance is present.

5.5.2 Algorithmic Data Sets

The experiment in this section applies the rules to eight data sets taken
from previous computational experiments by the first author. The data sets
were originally developed in the context of experimental research on algo-
rithms, and not for testing curve-bounding heuristics. Thus the performance
of the heuristics on these data sets may give more realistic indications of their
performance in practice. On the other hand, since these data sets are from
research problems, we don’t always know the true underlying function f̄(x),
and can’t always tell when the rules are correct.
The results appear in Figure 1.8. The left column gives the best analytical

bounds known for each function. The entries NA for PWD mark cases where
this rule was not applied because design points were not in required format
(with X increasing by constant multiples).
Data sets 1 and 2 represent the expected costs of Quicksort and Insertion

Sort, formulas for which are known exactly (see for example [5.20]). The
X values are [10, 20, 30, . . . , 1000] for Quicksort, and [10, 20, 30 . . . , 500]
for Insertion sort. These data sets were generated from the formulas with
no random noise. An experimental study of these algorithms would produce
random variation in the data, but because these algorithms are extremely
efficient it would be possible to make the variace quite small by taking large
batches of trials. For Quicksort the asymptotic leading term (i.e. the “correct
answer” is Θ(x log x); for Insertion sort the leading term is Θ(x2).
Sets 3 through 6 are from experiments on heuristics for one-dimensional

bin packing [5.6], [5.7]. In these experimentsX takes values [200, 400, 800, . . . ,
128000] (doubling each time). Set 3 shows measurements of bin count and Set
4 measures empty space, for First Fit Decreasing rule. Sets 5 and 6 show mea-
surements of empty space for the First Fit rule under two different parameter
settings. In all four cases, each Y value represents the mean of 25 indepen-
dent trials. Variance in the four data sets is, respectively, about 0.3x, 40x,
1x ,0.1x (times) the mean. The formulas shown on the left represent the best
analytical bounds known for the functions generating these data.
Sets 7 and 8 are from experiments on distances in random complete graphs

having weights drawn from a uniform distribution on (0, 1] [5.26]. In both
cases X = [200, 400, 600, . . . , 1400] and each Y value represents the mean
of 50 independent trials. In Set 7 variance is about 2x mean, and in Set 8
variance is a constant near 1000.
Contrary to experience with the constructed functions, the Guess Ratio

rule (GR) obtains a correct and tight bound when a negated second term
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Known GR GD PW PW3 PWD BC DF
1 (x+ 1)(2Hx+1−2) 1.20l 1.24u 1.23u 1.19u NA 1.18c 2u
2 (x2 − x)/4 2.00l 2.03u 3.01u 3.01u NA 2.00l 2u
3 x/2 +O(1/x2) 0.99l * 0.99l 1.00u† 1.00c 1.20c 2u
4 Θ(x0.5) 0.52l * 0.55c 0.58u 0.78c 1.00c 1u

5 O(x2/3(log x)1/2), 0.68l 0.72u 0.69c 0.69u 0.69c 0.69c 1u

Ω(x2/3)
6 y ≤ 0.68x 0.90l 1.00u 0.89l 0.95l 1.26l 0.98c 1u
7 x− 1 ≤ y

≤ 13.5x ln x 1.13l 1.18u 1.15u 1.12l NA 1.11c 2u
8 x lnx < y < 1.2x2 1.30l 1.47u 1.32u 1.20l NA 1.20c 2u

Fig. 5.8. Data from algorithmic experiments. The numbers give the leading ex-
ponents returned by the rules. The notations l, u, c, indicate the type of bound
reported, either lower, upper, or close. The numbers are rounded to two decimal
places: lower bounds are rounded down, upper bounds are rounded up, and close
bounds are rounded to the nearest decimal. The † marks a case where rounding
changed an incorrect result (0.999u) to a correct one (1.00u). An underline marks
a bound which is known to be incorrect, and * marks a case where the rule failed
to return an answer. In some cases (NA) the PWD rule was not applied because
the X values in the data did not increase by constant factors

is present (Set 2). However in four cases (Sets 1, 4, 5, and 7), GR produces
lower bound claims that violate the known bounds.
For Set 1 (and possibly for Sets 5, 7, and 8), the leading term contains a

logarithmic factor, which is not generated by our NextOrder function. From
additional tests that include logarithmic terms as guess functions, we observe
that none of the rules is able to distinguish logarithms from low-order expo-
nents such as x0.2 with any degree of reliability. Since logarithms do tend to
occur in many algorithmic research problems, it would be useful to develop
some techniques that can be applied specifically to this problem.
The Guess Difference rule and the Power Rules rarely violate known

bounds on the data sets, although without better analyses it is impossible to
tell whether the rules are correct in all cases. Note that BC nearly always re-
turns a “close” report, which is very difficult to evaluate. Interestingly, every
incorrect bound produced by these rules is a lower bound.
Data Sets 5 through 8 have gaps between the known lower and upper

bounds. In these cases we might hope that the heuristic rules can provide
some insight to direct future analytical research: does the upper bound need
to be lowered, or does the lower bound need to be raised (or both)?
In Sets 5 and 7, the (log x)0.5 and c log x gaps are too small to be dis-

tinguishable by these rules. In Set 6, however, the rules provide consensus
support for a conjecture that the true function f̄(x) is closer to linear Θ(x1)
than, say, to a square-root function Θ(x0.5). In Set 8 the results are even
stronger. Given the above observation that logarithmic terms tend to be in-
distinguishable from terms near x0.2, we have much greather support for a
conjecture f̄(x) = Θ(x log x) than than f̄(x) = Θ(x2) although the true an-
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swer may be somewhere in between. (In this case there is external supporting
evidence that the lower bound is tight.)

5.6 A Hybrid Iterative Refinement Method

In our informal explorations and designed experiments with little or no ran-
dom noise in the data, all the rules generally can get within a linear or
sometimes

√
x factor of the exact bound, except when they become “fooled”

by very large second-order terms. It is possible to reduce the effect of large
second-order terms by taking larger problem sizes, but the rules are surpris-
ingly slow to respond to this type of change. In this section we describe a
hybrid rule which appears to be very robust with respect to large second
terms.
The hybrid rule incorporates an iterative diagnosis and repair technique

that combines the existing heuristics to produce improved guess function
modes. The technique is designed to find upper bounds for functions of the
form axb+ cxd with rational exponents b > d ≥ 0 and real coefficients a � c.
This method represents a departure from our approach up to now: The earlier
methods were intended to be general, but this one is specific to functions
with relatively large coefficients on low order terms. This suggests a new role
for the methods we have discussed so far: Instead of using them to guess
at the order of a function, they can provide diagnostic information about
the function (e.g., whether a � c), and then more specific, purpose-built
methods, designed for particular kinds of functions, can estimate parameters.
To illustrate this new approach, we developed a three-step hybrid method

for functions of the form f̄(x) = axb + cxd;

1. Apply a discrete derivative (the Difference rule) to the datasets, in order
to find the integer interval of the exponent b.

2. Refine the guess for the exponent using the Guess Ratio rule. We start
with the known upper and lower bound for the exponent, u and l. At each
step we consider the model x(u+l)/2 by plotting x against y/x(u+l)/2. If
the plotted points appear to be decreasing, then (u+l)/2 is overestimating
the exponent, and we replace u by (u+ l)/2. If the points are increasing,
then l will be replaced. The estimates are refined until u and l get within a
desired distance ε of each other. At this point, if the dataset y/x(u+l)/2 has
a DownUp feature, then we know that function f̄ must have a relatively
high coefficient c on a low order term. This diagnosis invokes the next
step.

3. If, as we suspect, the current result is tracking a low-order term with
a high coefficient, then this term will dominate f̄ for small values of x.
Thus we can approximate the upper bound for small x’s to be cxd. Let
(x1, y1) and (x2, y2) be two points from the beginning part of the curve.
If we consider that y1 ≈ cxd1 and y2 ≈ cxd2, then d can be approximated



5. Using Finite Experiments to Study Asymptotic Performance 121

by log y1−log y2
log x1−log x2

, and c is y1
xd
1
. Now we can correct the model using these

estimates, in order to make the high-order term appear. For all points
(x, y), we transform y into y

xd − c. Now we can apply the same procedure
as above to find the a and b parameters, assuming that y ≈ axb. In this
case, though, we use for our estimates two points that have high values
of x, as the influence of the high-order term is stronger for these points.

This technique illustrates a way in which models can be improved by
generating data and comparing it against the real values to obtain diagnostic
information (step 2), which suggests a method specific to the diagnosis—
in this case, a method specific to functions with large coefficients on low
order terms. (We envision similar diagnostics and methods for functions with
negative coefficients, but we haven’t designed them, yet.)
The results of this method are found in the columns labeled HY in Figures

1 and 2. The results are tight upper bounds when f̄ does in fact contain a
low order term with a large coefficient (functions 7, 10, 11, 14, and 17 in
Figure 5.5). In fact, these bounds are tighter than those returned by the other
methods, and, remarkably, this hybrid method estimates coefficients and low
order exponents very well. When the functions do not contain low order terms
with large coefficients, the bounds returned by this method remain correct
but they are looser than those given by other methods. Interestingly, this
situation is often indicated by very low estimated coefficients on the high
order terms; for example, in funtion 1 (Fig. 1), the coefficient of the first
term is 0.03. The only cases when the technique fails are those in which
negative coefficients appear in the low-order terms. The failure is probably
due to the sensitivity of the Guess Ratio heuristic to such circumstances. This
new method was also tested on noisy datasets but the noise had negligible
effects. The new method used different oracles and different implementations
of oracles from the previous methods, which might account for the relatively
robust performance. Or, the small effects of noise might be due to a different
method for sampling data from the given functions. Clearly, the effects of
noise on these methods are still poorly understood.

5.6.1 Remark

In our informal and designed experiments with little or no random noise in
the data, all the rules generally can get within about a

√
x factor of the

exact bound, except when they become “fooled” by large or negative-valued
second-order terms. It is possible to reduce the effect of large second-order
terms by taking larger problem sizes, but the rules are slow to respond to
this type of change. The hybrid diagnostic method described in Section 5.6
can be used with success on such problems.
On data from algorithmic research problems, the rules can return results

within a factor of x and sometimes less (of the correct answer when it is
known, and of one another when it is not known). The rules are not reliable
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in distinguishing low-order and logarithmic factors (this holds even when
logarithms are added to the NextOrder oracle). Thus while the simple rules
applied here provide fairly reliable conjectures to guide future analytical re-
search when the known bounds are separated by at least a linear factor, more
sophisticated approaches (or perhaps better data sets) are necessary if finer
distinctions are needed.
It is sometimes possible to improve the data sets to obtain more reliable

results. Although the rules do not much respond when the largest problem
size is doubled, they do seem to be very responsive to reductions in data
variance. This is good news for algorithm analyzers, since variance can be
reduced by taking more random trials, and trials are easier to get when Y
grows slowly: the situations where small variance is most needed are those
situations where small variance is easiest to obtain.
Can Humans Do Better? We have preliminary results concerning inter-
active uses of the rules. In one experiment, the fourth co-author was given
the 25 data sets presented here, without any information about their prove-
nance, and was allowed to use any data analysis approach available in the
powerful CLASP library. The human was more frequently incorrect than any
of the implemented rules, and the human/machine interactions took much
more time to accomplish.
A second experiment involved strict application of the heuristic rules, but

with a human oracle (the first co-author) who was familiar with the eight
algorithmic data sets. Here also, interactive trials required much more time
to perform than did the offline versions (on the order of a few hours rather
than a few seconds). Very preliminary results indicate that: the GR produces
worse (less close) bounds with a human Trend oracle; the human Concavity
oracle tends to agree with the implemented one when used by the Power rules
(no change in performance); a human-interactive version of the GD rule is
more successful at finding initial DownUp curves (leading to more frequent
success), but is not able to find tighter bounds for this rule in general; and an
interactive BoxCox can be used to provide upper/lower bounds that bracket
the estimate, thus avoiding the “close” and errorneous bounds returned by
the implemented version.

Removing Constant Terms. In many applications it may be possible to
remove a constant from Y before analysis, either by testing with x = 0
or by subtracting an estimated constant. Our preliminary results suggest
that subtraction of a known constant uniformly improves all the rules, but
subtracting an estimated constant gives mixed results.

Rule Variations. It is a problem for future research to implement and
evaluate the many variations on the oracles and the iterative rules GR, GD,
and BC. The Guess Ratio rule would probably be improved by a Trend
oracle that is robust with respect to negated second terms. Indeed, it is likely
that much more sophisticated oracle functions than our simple ones can be
developed.
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The Guess Difference rule appears to be very sensitive to the initial
function and to the granularity of the step functions in the NextOrder and
NextCoefficient oracles. So far we cannot find any pattern for this sensitivity.
It does seem clear that when an initial guess is too close to the answer, GD
fails to find an initial DownUp curve. This rule might be greatly improved by
addition of a heuristic search mechanism. Also, we might give the iterative
rules fewer options to choose from. The BoxCox rule sometimes improves
with coarser step size (because the best transformation gives an exponent
somewhere the first and second terms). When the fit is close, however, the
BC rule can make erronous bound claims. Thus the rule’s goal of finding the
best fit works at odds with the goal of finding a reliable bound. The bounds
returned by GR and GD nearly always improve when step size decreases. The
PWD might be improved by taking differences more than once; one promising
idea is to take differences until the data appears concave downwards.

5.7 Discussion

We have seen different aspect of the problem how to identify asymptotic
behaviour from experiments. Sections 5.4–5.6 provide us with a few rather
general semi-automatic tools for this purpose but also with plenty of examples
where these rule do not work.
More successful is the more specific approach based on the scientific

method discussed in Section 5.3. But in what sense are these examples “suc-
cessful”? Assume that using the scientific method we have found an experi-
mentally well supported hypothesis about the running time of an important,
difficult to analyze algorithm. How should this result be interpreted? It may
be viewed as a conjecture for guiding further theoretical research for a math-
ematical proof. If this proof is not found, a well tested hypothesis may also
serve as a surrogate. For example, in algorithmics the hypotheses “a good
implementation of the simplex method runs in polynomial time” or “NP-
complete problems are hard to solve in the worst case” play an important
role. The success of the scientific method in the natural sciences — even where
deductive results would be possible in principle — is a further hint that such
hypotheses may play an increasingly important role in algorithmics. For ex-
ample, Cohen-Tannoudji et al. [5.13] (after 1095 pages of deductive results)
state that “in all fields of physics, there are very few problems which can
be treated completely analytically.” Even a simple two-body system like the
hydrogen atom cannot be handled analytically without making simplifying
assumptions (like handling the proton classically). For the same reason, ex-
periments are of utmost importance in chemistry although there is little doubt
that well known laws like the Schrödinger equation in principle could explain
most of chemistry.
Of course, no tool is perfect, and the hazards of extrapolating from ex-

perimental data to find reliable asymptotic bounds can not be ignored. Our
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study of five simple heuristic strategies (with variations) suggests that any
of the approaches can produce a correct asymptotic bound within an order
of magnitude when the data set is well-behaved: that is, when there is very
little random noise in the y-values, and when the largest problem size is large
enough to overcome “noise” due to large constant factors in low order terms.
However, when the research problem requires inferences about bounds

that are more finely-tuned than one order of magnitude (for example, whether
a function grows as O(n) vs O(n log n), or whether a root-n factor is present),
the five rules become unreliable, especially when the quality of data deterio-
rates. The rules are quite sensitive to random variation in the y-values, and
somewhat less sensitive to changes in the largest problem size.
In these types of experimental situations, then, the extrapolation tech-

niques described here must be used with caution, and/or steps must be taken
to improve the quality of the data obtained from the experiment. Fortunately,
in many algorithmic research problems it is easy to reduce variance in the
experimental data by taking more experiments or by applying variance re-
duction techniques. It does appear to be an important component of good
experimental practice to set problem sizes as large as possible, so as to over-
come any possible interference from low order terms.
It is an interesting open research problem to develop better and more

sophisticated strategies for obtaining reliable asymptotic inferences from al-
gorithmic experiments.
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