
Learning a deterministic finite automaton with a recurrent neural network

Laura Firoiu y (lfiroiu@cs.umass.edu)

Tim Oatesy (oates@cs.umass.edu)

Paul R. Coheny (cohen@cs.umass.edu)y Computer Science Department, LGRC, University of Massachusetts, Box 34610

Amherst, MA 01003-4610

Abstract

We consider the problem of learning a finite automaton with recurrent neural networks, given a training set of

sentences in a language. We train Elman recurrent neural networks on the prediction task and study experimen-

tally what these networks learn. We found that the network tends to encodean approximation of the minimum

automaton that accepts only the sentences in the training set.

1 Introduction

1.1 The problem of inducing a deterministic finite automaton (DFA)

The interest inDFA inference is partly induced from the larger goal of explaining how humans learn the grammar

rules of their native language. There have been debates on whether children learn in an unsupervised mode, just by

listening to other language speakers, or if they have innateknowledge of language. Therefore, it is an interesting

problem to see what can be learned just by “listening to others”, that is, from a set of grammatically correct sentences.

While the complex syntactic rules of natural language cannot be encoded efficiently as regular grammar productions,

fragments of language can be represented by finite automata.Thus this representation which is preferred due to its

simplicity, is adequate for some small languages.

1.2 Deterministic Finite Automata(DFA) and Recurrent Neural Networks (RNN)

In spite of the low complexity (uniformity) of the representation, the problem of learning finite automata turned out

to be quite difficult. Different kinds of finite automata induction problems have been studied:� Gold ([5]) showed that if the language is not known to be finite, then grammar induction from even infinite

sequences of sentences in the language is not always possible.� Gold ([6]) showed that the problem of finding the smallest automaton consistent with a finite set of accepted

and rejected strings from the language is NP-complete; Pittand Warmuth ([11]) showed that even aDFA

which is at most polynomially larger than the optimum solution is still hard to find; Kearns and Valiant ([7])

showed that the learning problem remains difficult even whena different hypothesis space is searched.

In this work we study the problem using simple recurrent neural networks to induce a regular grammar that is

consistent with atraining setof sentences from the language, i.e. from positive evidenceonly. This problem is

1

different from the problem of finding the minimumDFA consistent with a set of positive and negative examples.

The difference comes from the absence of negative examples and explicit assumption about the sentences that are

not in the language. This absence renders the problem under-specified and may lead to one of the two extreme

assumptions:� If it is assumed that negative examples do not exist then the language consists of all the sentences over the

alphabet, so the minimumDFA that represents the language is the automaton with just one state.� If it is assumed that the negative examples are all the sentences that are not in the training set then the language

is completely defined by the training set and there is a polynomial time algorithm on the sample size that builds

a finite automaton that accepts exactly this language. We call this automaton thetraining set DFA. ThisDFA

has a unique state for each prefix of the sentences in the training set and can be minimized in polynomial time.

The problem resembles the conditions of the Gold’s theorem on the impossibility of language learning from

positive evidence, with the provision that the sequence of examples cannot be infinite.

Recurrent neural networks and deterministic finite automata have similar behaviors. They are both state devices

and their state functions have the same form :state(t) = f(state(t� 1); input symbol(t)). It has been shown (see

[13]) that there is an immediate encoding of aDFA with n states andm input symbols into a simple recurrent neural

network withm � n state units. Conversely, aDFA can be easily extracted from such aRNN . Neural networks

have the attractive property of being trainable devices, due to the backpropagation algorithm and its variants. Given

their representational and learning capabilities, recurrent neural networks are a natural choice for the tasks ofDFA

encoding or induction.

Due to this property, different network architectures, forexample second order networks (with multiplicative

units) have been used for the task ofDFA induction. For output-less automata, the network can be trained either with

the word following the current input (the prediction task) as in [3] , or if both positive and negative examples are

present, with a target encoding the membership in the language of the current string as in [4] . For automata with

output, the natural choice of the target is the output symbolof the current transition.

As in [1]and [3] we use an Elman recurrent network trained on the prediction task to induce aDFA , and are

interested in understanding what automaton is learned by the network. In section 2 we describe in more detail

the setting of the learning task, the experiments and results. In section 3 we observe that the network learns an

approximation of the minimumDFA of the training set and conclude that this network architecture and training

regime are biased towards the extreme case where the training set is the entire language.

2 Experiments

2.1 The grammar and the languages

We wrote a small context free grammar (CFG), that generates natural-sounding sentences, similar with the one used

in [3] . Some of the constraints imposed syntactically by this grammar are subject-verb and noun phrase-relative

clause number agreement and transitive/intransitive verbdistinctions.

From this CFG we obtained a regular grammar by expanding the start symbol with all possible productions, up

to an arbitrary depth in the derivation trees. The resultingregular grammar can generate only a subset of the original

2

language. Furthermore, the regular grammar is used to generate sentences with bounded length. A fragment of the

initial context free grammar is given in figure 1. The sub-languages we generated from this grammar are:� “elm r1 d4” has 56 sentences like “Mary sees .”, “the girls see .”, “John and John walk .”� “elm r2 d5” has 512 sentences and includes the previous language. Some of its sentences are “ Mary feeds

the girl .”, “Mary chases Mary and Mary .”, “the cat sees the girl .”, “the boy who walks sees .”.

S ! NP hs VPhs . S ! NP hp VP hp .

S ! NP as VPas . S ! NP ap VPap .

NP hs ! thefboy, girlg NP hs ! fJohn, Maryg
NP hp ! thefboys, girlsg RC hp RChp ! who VP hp

VP hp ! chase OBJ VPhp ! feed OBJ

OBJ ! NP hs OBJ ! NP hp

Figure 1: Part of the CFG that generates the sub-languages used for training the network.

Some of the above sentences are unusual in natural language.A constraint like “chase” is a verb that requires

a direct object could be easily incorporated in the context-free grammar rules by creating a separate variable for

this verb category and then adding the corresponding productions, with at most a double increase in the number of

the existing productions. On the other hand, a constraint that avoids sentences like “Mary and Mary ...” cannot be

expressed without an exponential increase of the number of context free productions. For this reason, we decided to

allow such sentences in the languages we used as training sets.

2.2 Network Architecture and Training

We use Elman recurrent neural networks, with the architecture and notations as in figure 2. The activation function

of the hidden and output nodes is the sigmoid�(x) = 1=(1 + exp(�x)).
The network is trained with the backpropagation through time algorithm (see [14]) and with the cross-entropy

error function.

All sentences in the training set are presented to the network, one word at each time step. There is one input

unit for each word of the alphabet. An extra symbol, “startof sentence”, marks the beginning of each sentence.

This extra symbol plays the role of the starting state of the automaton. Because the network state is set to 0 at each

beginning of sentence, this additional input unit providesthe initial context. The (approximately) periodic reset and

the short sentences help avoid the state instability mentioned by Kolen in [8] . Thus, we avoid the solution proposed

by Giles in [10] , that relies on large weights and biases, because we noticed that the network learns better when

it starts with small weights. The network is trained for the prediction task: the word following the input word in

the current sentence represents the target output. There isalso one output unit for each word in the alphabet, and a

special marker “endof sentence”.

The cost to be optimized is the cross-entropy error function. As described in [12] , the cross-entropy function

forces the network to learn the probability distribution over the next words, conditioned on the input symbol and the

network:P (x(t + 1) j N;x(t)). The network weights are updated on-line, with the backpropagation through time

algorithm. We noticed that for input sequences of more than one hundred words, batch training yields large update

3

one input unit per vocabulary word +
special start-of-sentence symbol

x = input
symbol(t)

c = context(t)
 = state(t-1)

o = output(t)

eventually one state unit
for each grammar variable

exact
 copy

one input unit per vocabulary word +
 special end-of-sentence symbol

<eos>o_j

x_l <S0> c_k

h = state(t) h_i

weights
α

weights
γ

weights
β

� n = the number of hidden units = the number of

context units.� m = the number of input units = the number of

output units.� � = f
i;jg are the hidden to output weights.� A = f�l;ig are the input to hidden weights.� B = f�k;ig are the weights of the recurrent

links,

from context to hidden units, wherecontext(t) = state(t � 1); t � 1 andcontext(0) = 0.� ~x(t) is the input vector at timet � 1� ~h(t) is the network state at timet � 1� ~o(t) is the output vector at timet � 1� ~c(t) = ~h(t� 1) is the context at timet; t � 1
Figure 2: Elman network architecture and notation.

values of the weights, thus leading quickly to saturation and no further learning. A learning rate of .1 and momentum

of .9 gave the best results in terms of network convergence. For each training set, we chose the number of hidden

units to be approximately equal to the number of states in theassociatedDFA . The weight update equations for this

architecture and training regime are given in appendix A.

2.3 DFA extraction

One method used so far for extracting aDFA from aRNN, for example see [4] , is to assume that the network states

whose values are close inRn form well separated clusters that represent the automaton states. We rely on the same

assumption and obtain theDFA states by hierarchically clustering the network states into a binary tree and then by

merging the siblings, provided they satisfy a distributional criterion. This additional criterion is necessary for two

reasons: first, to stop the merging from reaching the root of the tree, thus yielding a one-state automaton, and second

to correct eventual “network errors”, that is states that have close values but cannot encode equivalentDFA states.

This criterion tests for the similarity of the distributions over the state classes that follow and precede the two classes.

The initial state classes are formed by the identical network states. We use a G statistic, which has a�2 distribution

(see [2]) to test if there is a statistically significant difference in the two probability distributions. At the beginning of

merging, because there are too many degrees of freedom (the number of states), and each state is usually preceded

and followed by only one state, respectively, the G statistic is not effective. But as merging proceeds, irrespective

of the distributional criterion, the number of states in each class increases, while the number of degrees of freedom

decreases and the G statistic becomes effective and eventually stops the process.

Alternatively, we can view each word occurrence in a regularlanguage as being indexed by the pair of states

between which it transits. The language alphabet becomes the set of terminal (word) instances that occur between

two states of its automaton. The language with the set of symbols thus modified becomes aSzilard language of a

regular grammar. As described in [9] , this kind of languageshas a polynomial inference algorithm that induces the

4

grammar from a set of positive examples. Obviously, any regular language can be “Szilard-ified” in this manner. If

we consider the network states at timest� 1 andt as the additional index on the current input symbol,x(t) we can

treat the unknown target language as Szilard:� represent the word instancex(t) as the concatenation of the previous and current network statesh~c(t);~h(t)i� cluster the word instances, based on this representation� consider each cluster a set of terminals that appear only on transitions between the same pair of states (the

Szilard property) and apply the inference algorithm to construct theDFA ; conflate the occurrences of the same

word in a cluster into the original terminal.

The resultingDFA does not necessarily represent a Szilard language of a regular grammar, because instances of

the same terminal can appear on different transitions. Thismerging technique obtains the “Szilard-ified” version of

an unknown regular language that contains all the sentencesin the training set.

2.4 Results

We trained the network several times with each of the chosen sub-languages. Three methods were used forDFA

extraction:� direct mapping of clusters of network states to theDFA states; this automaton is noted thestate DFA.� direct mapping of clusters of the concatenation of the previous and current network states to theDFA states;

this method tries to avoid “network errors”: two network states are further distinguished by part of the paths

that lead to them, namely by their previous states; this has the effect of a more conservative merging, that

eventually avoids clustering together two states that get close values accidentally (states that are not actually

equivalent in thetraining set DFA. this automaton is noted theprev state DFA.� constructing the Szilard version of the unknown target language, as described in section 2.3; this automaton is

noted theSzilard DFA.

The results in table 1 compare the induced automata for each of the training sets with the corresponding mini-

mizedtraining set DFA.

It can be noticed in table 1 that while for the smaller language thetraining set DFAis almost always recovered,

for the larger language the resulting automaton generates many more sentences than there are in the training set.

Some of these sentences, like “the boy feeds Mary and John .” are in the language of the original CFG and represent

correct generalizations. Other sentences are plainly incorrect, like “John lives walks lives lives hears.”, which is

generated by a cycle in the inducedDFA .

3 What DFA is extracted from the trained network ?

If the network always starts in the same state at the beginning of the sentence, then theRNNwill reach the same

state for all unique prefixes of the sentences in the trainingset. For example, the prefix “a b” from the sentences “a

b c .” and “a b d .” will lead the network to the same state.s0 a�! s1 = f(a; s0) b�! s2 = f(b; s1)
5

language training set DFA state DFA prev state DFA Szilard DFA

elm r1 d4 8 states 8 states 8 states 7 states

56 sent. 0 extra sent. 0 extra sent. 32 extra sent. (all correct generalizations) :

“the boy and John hear .”

“the boy and Mary hear .”
...

8 states 8 states 9 states

0 extra sent. 0 extra sent. 0 extra sent.

elm r2 d5 22 states 23 states 21 states 23 states

512 sent. 849 extra sent. : 298 extra sent. : 4068 extra sent. :

18 states 20 states 21 states

1188 extra sent. : 260 extra sent. : 1560 extra sent. :
“John and John
feed the boy .”

“the boy feeds
Mary and John .”

“John and Mary
and John see .”

“John chases Mary
and John walk .”

“the cat lives
the boy . “

“John and John
who walk see .”

“John lives walks
lives lives hears .” “John and Mary .”

“the boys who live
hear Mary .”

...
...

...

Table 1: The original and induced automata for the two increasingly complex sub-languages of the CFG grammar.

The “extra sent.” in the induced automata is the number of sentences accepted by theseDFA , which are not in the

corresponding training set. The sentences were generated by imposing a limit ofd+1 words on the sentence length,

whered is the maximum sentence length in the training set.

6

Because the network states belong in principle to a continuous space, it is not likely that two states corresponding

to two different prefixes will be identical, unless the weights are adapted to encode precisely such an equality. So,

for random weights, we can assume a one-to-one mapping between the set of sentence prefixes and the network

states, and name each state with its associated prefix.

It follows that theRNNwill construct the prefix tree of the training set, as it can beseen in figure 3.

This implies that the network tries to learn the probabilitydistribution over the next words conditioned on the

current prefix : P (x(t+ 1) j N;x(t)) = P (x(t+ 1) j hw; x(t)) = P (x(t+ 1) j hw)
For the simple example in figure 3 the network states are:fh0; ha; hab; hac; hab:; hac:g. The states in a finite

automaton are also defined by the strings of words that label the paths that lead to them from the start state. For

example, in figure 3, stateq1 is defined by “a”, whileq2 is defined by the setf“a b”, “a c”g. It follows that the

network states can be partitioned in groups corresponding to the states of the training set DFA. For the example in

figure 3 the network statesfhab; hacg correspond to theDFA stateq2.
s3

.

s4
.

s0 s1 s2a b

c

d

s5

s6

<eos>

<eos>

FSq1q0 q2
a

b

c

.

Figure 3: The prefix tree of the training setf“a b .”, “a b .”g and theDFA that represents it.

Due to the cross-entropy error function, the training process will adapt the network weights such that each state

will describe the probability distribution over the next words. For a prefixw, this constraint is described by the

equation�(� � hw) = P(next word j w). Because the sigmoid function� is injective, if two stringsw1 andw2
have the same distributions over the next words, then the network will ideally assign two stateshw1 andhw2 such that� � hw1 � � � hw2 . It follows that a possible solution ishw1 � hw2 . So, the network will eventually assign similar

values for the states associated with prefixes that can be followed by the same words. This approximate merging

is reminiscent of the classicalDFA minimization algorithm. The difference is that while theDFA minimization

algorithm, according to the definition of equivalent states, considers the entire paths from each state to the final state,

the network is trained only with the words immediately following the two states and thus has a different criterion

for merging. This criterion, i.e. the probability distribution over the next words, is weaker than the finite automaton

state equivalence criterion, because it relies on less information. It follows that it can lead to merges of states which

are not equivalent in theDFA of the training set and thus to generalizations beyond this set.

For some training sets, for example like that in fig. 3, the twocriteria are equivalent: the first word of the

path following a state uniquely identifies the path. For suchcases, the network training process can converge to an

approximate encoding of the training setDFA : the network statesfhwi ; hwj ; : : :g corresponding to oneDFA state

might converge to values close in metric space. On the other hand, because the backpropagation algorithm may find

only a local minimum of the error function, it can happen thatnot all the states with the same probability distribution

over the next words are assigned similar values. Thus, states that are equivalent in the training setDFA might not get

close values and thus are not merged. These phenomena can be seen in the examples in figures 4 and 5.

For the training setf“a b .”, “a c .”g, it can be seen in figure 4 how the encodings in the hidden layerof the states

7

fhab; hacg andfhab:; hac:g converge towards the same values, respectively.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

hi
dd

en
 u

ni
t 1

iterations

a
ac
ab
ac.
ab.

Evolution of the first hidden unit during the first

100 iterations.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

hi
dd

en
 u

ni
t 2

iterations

a
ac
ab
ac.
ab.

Evolution of the second hidden unit during the first

100 iterations.
The values of the hidden units after 20000 iterations, for all the prefixes in the training set:

prefix: “a” “ac” “ac.” “a” “ab” “ab.”

hidden unit 1 0.054 1.000 0.001 0.054 1.000 0.001

hidden unit 2 0.062 0.123 1.000 0.062 0.123 1.000

Figure 4: Convergence of the network states to an encoding ofthe states of theDFA that represents the training set

for a network with two states.

For the small network in in figure 4, the evolution of states can be traced by examining the weight update

equations. In order to explain, for example, how the values of the first hidden unit for the prefix stateshab andhac,
which have the same probability distribution over the next words, vary together in time, as in figure 4, we look at the

weights�c;1 and�b;1. The prefix states occur at time steps2 and4. Because these states are preceded by the same

stateha , the difference in their activation values is given only by the difference of the two weights. It follows that

the two weights,�c;1 and�b;1 must also have the same variation in time. From the fact that the network is reset at

time 3 and from the update equations in section A it follows that the updates of these weights for one sweep in the

training set, are :4�c;1 / h1(2)[1 � h1(2)]| {z }positive finflh1(2) + nXa=1�1;aha(3)[1 � ha(3)]inflha(3)]g| {z }part2��b;1 / h1(4)[1 � h1(4)]| {z }positive finflh1(4) + nXa=1 �1;aha(5)[1 � ha(5)]inflha(5)]g| {z }part2
If we consider that at the beginning of the training the weights are small, the second term can be ignored in both

equations. Thus, the more important terms areinflh1(2) andinflh1(4). Because the two prefix states are followed

by the same symbol, ’.’, the two terms become :� inflh1(2) =
1;: �Pmj=1
1;joj(2)� inflh1(4) =
1;: �Pmj=1
1;joj(4)
8

The values of the output units for the two states are:� h\ab00 : oj(2) = �(Pni=1
i;j�(�c;i + const(B; context)))� h\ac00 : oj(4) = �(Pni=1
i;j�(�0b0;i + const(B; context)))
From the above formulas it follows thatoj(2) andoj(4) cannot be far apart, because the weights�c;i and�0b0;i ,

which are the only non-equal quantities in the above formulas, are small. Furthermore, the differences in the output

values induced by these weights are reduced by the double application of the sigmoid function. It follows that

eventually, the two valuesinflh1(2) andinflh1(4) will have the same sign, and thus the weights�c;1 and�b;1 will

change in the same direction. Once this happens, these weights will influence the output in the same direction and

the process continues.

For larger training sets and networks, the evolution of states, weights and output values becomes even more

difficult to follow, but it can be watched in experiments. Forthe language “elmr2 d5” we look at three sets of

prefixes,f “the cats who hear”, “the boys who see”g, f“the cats who hear hear”, “the boys who see see”g andf“Mary”, “the boy”g, each set being characterized by a different probability distribution. The evolution of two

hidden units, arbitrarily chosen, in the states associatedwith each prefix is depicted in figure 5. It can be noticed

that the states in the same set did not all converge to close values. For example, the states “the boy” and “Mary” get

different representations for those two units, despite their common next word probability distribution. On the other

hand, the states of the first two sets do get similar values although they should be distinguished.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000

the cats who hear
the cats who hear hear

the boys who see
the boys who see see

Mary ...
the boy ...

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5000 10000 15000 20000

the cats who hear
the cats who hear hear

the boys who see
the boys who see see

Mary ...
the boy ...

Figure 5: Evolution of hidden units 9 and 17 of the states associated with prefixesf “the cats who hear”, “the boys

who see”g, f“the cats who hear hear”, “the boys who see see”g andf“Mary”, “the boy”g.
4 Conclusions

We addressed In the experiments conducted, simple recurrent neural networks were trained with sets of sentences

from a regular language. The results indicate that the network is biased towards encoding the minimum automaton

of the training set. For a very small network, an informal analysis of the learning process supports this finding. This

bias is more evident for smaller training sets and networks.For more complex training sets, the network might not

be able to correctly minimize thetraining set DFAand these errors may lead sometimes to correct generalizations.

9

A The update equations for batch training for backpropagation through time and

cross-entropy cost function

The following formulas use the notations and apply to the network described in section 2.2. As in [12] , the cost

function for a set ofT input-output vector pairsfhx(t); d(t)i; 1 � t � Tg is:C = TYt=1Ct = TYt=1P (~d(t) j ~x(t); N(t)).
If the output units are seen as encoding the probabilityoj(t) = P (dj(t) = 1 j ~x(t); N(t)) then the logarithm of

the cost function is:lnC = TXt=1 mXj=1 dj(t) ln oj(t)+ [1� dj(t)] ln[1� oj(t)] . It can be noticed that for the prediction

task,d(t); d(t + 1); : : : are independent, given the network state, because this state encodes the prefix at each time

step. The partial derivative of theCt component of this function to a parameter� is:
@Ct@� = mXj=1[dj(t) � oj(t)] �@netoj (t)@� , wherenetoj (t) is the net activation of output unitj.

The weight changes are :�� / TXt=1 @Ct@� , with � 2 f
i;j; �l;i; �k;ig.
By applying the chain rule as in [14] , the weight changes at a time stept are:� The weights from hidden to output units:@Ct@
i;j = [dj(t)� oj(t)]hi(t)� Let inflhi(t) = mXj
i;j [dj(t)� oj(t)]. Let �i;a be the function that is 1 whena = i and 0 otherwise.� The weights from input to hidden units:

@Ct@�l;i = nXa=1 ha(t)[1� ha(t)]inflha(t)@netha(t)@�l;i� The recurrent weights from context to hidden units:
@Ct@�k;i = nXa=1 ha(t)[1 � ha(t)]inflha(t)@netha(t)@�k;i

The derivatives of the net activationsfnetag are defined iteratively:� t = 0 : ha(0) = 0 and @netha@� = 0� @netha(t)@�l;i = �i;axl(t) + nXb=1�b;ahb(t)[1� hb(t)]@nethb(t� 1)@�l;i� @netha(t)@�k;i = �i;akk(t� 1) + nXb=1 �b;ahb(t)[1� hb(t)]@nethb(t� 1)@�k;i
From the above equations it follows that:� t = 1 :

@netha(t)@�k;i = 0 ,
@netha(t)@�l;i = �i;axl(1)� t = 2 :

@netha(t)@�k;i = �i;ahk(1)@netha(t)@�l;i = �i;axl(2) + �i;ahi(1)[1 � hi(1)]xl(1)
10

� t = 3 :
@netha(t)@�k;i = �i;ahk(2) + �i;ahi(1)[1 � hi(1)]hk(1)@netha(t)@�l;i = �i;axl(3) + �i;ahi(2)[1 � hi(2)]xl(2) +Pnb=1 �b;ahb(2)[1 � hb(2)]�i;bhi(1)[1 � hi(1)]xl(1)

References

[1] A. Cleeremans, D. Servan-Schreiber, and J.L. McClelland. Finite state automata and simple recurrent networks.

Neural Computation, 1:372–381, 1989.

[2] P. R. Cohen.Empirical Methods for Artificial Intelligence. The MIT Press, 1995.

[3] J. L. Elman. Distributed representations, simple recurrent networks, and grammatical structure.Machine

Learning, 1992.

[4] C. L. Giles, C. B. Miller, D. Chen, G. Z. Sun, H. H. Chen, andY. C. Lee. Extracting and learning anunknown

grammar with recurrent neural networks. InAdvances in Neural Information Processing Systems 4. 1992.

[5] E. M. Gold. Language identification in the limit.Information and control, 10:447–474, 1967.

[6] E. M. Gold. Complexity of automaton identification from given data. Information and control, 37:302–420,

1978.

[7] Michael Kearns and Leslie Valiant. Cryptographic limitations on learning boolean formulae and finite au-

tomata.Journal of the ACM, 41(1):67–95, 1994.

[8] John F. Kolen. Fool’s gold: Extracting finite state machines from recurrent network dynamics. InAdvances in

Neural Information Processing Systems 6, 1994.

[9] E. Makinen. Inferring regular languages by merging nonterminals. Technical Report A-1997-6, Department of

Computer Science, University of Tampere, 1997.

[10] Christian W. Omlin and C. Lee Giles. Constructing deterministic finite-state automata in recurrent neural

networks. Technical report, Computer Science Department,Rensselaer Polytechnic Institute, 1994.

[11] Leonard Pitt and Manfred K. Warmuth. The minimum consistent dfa problem cannot be approximated within

any polynomial.Journal of the ACM, 40(1):95–142, 1993.

[12] D. E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin. Backpropagation: The basic theory. InBackpropa-

gation: Theory, architectures, and applications. Erlbaum, 1993.

[13] H. T Siegelmann.Theoretical Foundations of Recurrent Neural Networks. PhD thesis, Rutgers, 1992.

[14] P. N. Werbos.The roots of backpropagation. John Wiley & Sons, Inc., 1994.

11

