Learning a deterministic finite automaton with a recurrent neural network

Laura Firoiu T (Ifiroiu@cs.umass.edu)
Tim Oates' (oates@cs.umass.edu)
Paul R. Coheri (cohen@cs.umass.edu)
f Computer Science Department, LGRC, University of Massachusetts, Box 34610
Ambherst, MA 01003-4610

Abstract

We consider the problem of learning a finite automaton with recurrentaheetworks, given a training set of
sentences in a language. We train ElIman recurrent neural networks on theipregisk and study experimen-
tally what these networks learn. We found that the network tends to ermodpproximation of the minimum
automaton that accepts only the sentences in the training set.

1 Introduction

1.1 The problem of inducing a deterministic finite automaton DFA)

The interest irDFA inference is partly induced from the larger goal of explaghhow humans learn the grammar
rules of their native language. There have been debates etharchildren learn in an unsupervised mode, just by
listening to other language speakers, or if they have inkatsvledge of language. Therefore, it is an interesting
problem to see what can be learned just by “listening to sthérat is, from a set of grammatically correct sentences.
While the complex syntactic rules of natural language cabha@ncoded efficiently as regular grammar productions,
fragments of language can be represented by finite automhtes this representation which is preferred due to its
simplicity, is adequate for some small languages.

1.2 Deterministic Finite Automata(DFA) and Recurrent Neural Networks (RNN)

In spite of the low complexity (uniformity) of the represation, the problem of learning finite automata turned out
to be quite difficult. Different kinds of finite automata inttion problems have been studied:
e Gold ([5]) showed that if the language is not known to be finilen grammar induction from even infinite
sequences of sentences in the language is not always gossibl
¢ Gold ([6]) showed that the problem of finding the smallesbedton consistent with a finite set of accepted
and rejected strings from the language is NP-complete;aRit Warmuth ([11]) showed that everDd&A
which is at most polynomially larger than the optimum salatis still hard to find; Kearns and Valiant ([7])
showed that the learning problem remains difficult even wéelifferent hypothesis space is searched.

In this work we study the problem using simple recurrent akoetworks to induce a regular grammar that is
consistent with draining setof sentences from the language, i.e. from positive evidemig This problem is

different from the problem of finding the minimulFA consistent with a set of positive and negative examples.
The difference comes from the absence of negative examptkesxplicit assumption about the sentences that are
not in the language. This absence renders the problem wpeeified and may lead to one of the two extreme
assumptions:

e If it is assumed that negative examples do not exist thenathgulage consists of all the sentences over the
alphabet, so the minimumFA that represents the language is the automaton with justtatee s

e Ifitis assumed that the negative examples are all the seegdhat are not in the training set then the language
is completely defined by the training set and there is a pahjiabtime algorithm on the sample size that builds
a finite automaton that accepts exactly this language. Wéhtslautomaton théraining set DFA. ThisDFA
has a unique state for each prefix of the sentences in thényaset and can be minimized in polynomial time.

The problem resembles the conditions of the Gold’s theoranthe impossibility of language learning from
positive evidence, with the provision that the sequencealfrples cannot be infinite.

Recurrent neural networks and deterministic finite autanhatve similar behaviors. They are both state devices
and their state functions have the same forwtute(t) = f(state(t — 1), input_symbol(t)). It has been shown (see
[13]) that there is an immediate encoding dYBA with n states andn input symbols into a simple recurrent neural
network withm x n state units. Conversely, BFA can be easily extracted from sucR&AIN. Neural networks
have the attractive property of being trainable devices,tdithe backpropagation algorithm and its variants. Given
their representational and learning capabilities, remitrneural networks are a natural choice for the taskiaFs
encoding or induction.

Due to this property, different network architectures, ésmample second order networks (with multiplicative
units) have been used for the taskOFA induction. For output-less automata, the network can liegdeeither with
the word following the current inputlfe prediction taskas in [3] , or if both positive and negative examples are
present, with a target encoding the membership in the laggyoéthe current string as in [4] . For automata with
output, the natural choice of the target is the output syrobtie current transition.

As in [1]and [3] we use an Elman recurrent network trained lom prediction task to induce BFA , and are
interested in understanding what automaton is learned &yn#twork. In section 2 we describe in more detall
the setting of the learning task, the experiments and esuit section 3 we observe that the network learns an
approximation of the minimunFA of the training set and conclude that this network architeciand training
regime are biased towards the extreme case where the gaeins the entire language.

2 Experiments

2.1 The grammar and the languages

We wrote a small context free grammar (CFG), that generaisal-sounding sentences, similar with the one used
in [3] . Some of the constraints imposed syntactically by tpiammar are subject-verb and noun phrase-relative
clause number agreement and transitive/intransitive distinctions.

From this CFG we obtained a regular grammar by expandingtttesymbol with all possible productions, up
to an arbitrary depth in the derivation trees. The resultggular grammar can generate only a subset of the original

language. Furthermore, the regular grammar is used to gensentences with bounded length. A fragment of the
initial context free grammar is given in figure 1. The subglaages we generated from this grammar are:
e “elm_rl d4” has 56 sentences like “Mary sees ", “the girls see ."hfdand John walk .”
e “elm_r2_d5” has 512 sentences and includes the previous languagee &fits sentences are “ Mary feeds
the girl ", “Mary chases Mary and Mary .”, “the cat sees the §j “the boy who walks sees .".

S — NP_hs VPhs. S — NP_hp VPhp.
S — NP.as VPRas. S — NP.ap VPRPap.
NP_.hs — the{boy, girl} NP_.hs — {John, Many}
NP_.hp — the{boys, girls RChp RChp — whoVPhp
VP.hp — chase OBJ ViBhp — feed OBJ
OBJ — NPhs OBJ — NPhp

Figure 1: Part of the CFG that generates the sub-languagesfaistraining the network.

Some of the above sentences are unusual in natural langAaggmstraint like “chase” is a verb that requires
a direct object could be easily incorporated in the conteed-grammar rules by creating a separate variable for
this verb category and then adding the corresponding ptimhs; with at most a double increase in the number of
the existing productions. On the other hand, a constraattatioids sentences like “Mary and Mary ...” cannot be
expressed without an exponential increase of the numbearaéxt free productions. For this reason, we decided to
allow such sentences in the languages we used as trainsg set

2.2 Network Architecture and Training

We use Elman recurrent neural networks, with the architecimd notations as in figure 2. The activation function
of the hidden and output nodes is the sigmei@) = 1/(1 + ezp(—z)).

The network is trained with the backpropagation throughetaigorithm (see [14]) and with the cross-entropy
error function.

All sentences in the training set are presented to the nkfvemre word at each time step. There is one input
unit for each word of the alphabet. An extra symbol, “siaftisentence”, marks the beginning of each sentence.
This extra symbol plays the role of the starting state of ttematon. Because the network state is set to 0 at each
beginning of sentence, this additional input unit provittesinitial context. The (approximately) periodic resetlan
the short sentences help avoid the state instability mesdidy Kolen in [8] . Thus, we avoid the solution proposed
by Giles in [10] , that relies on large weights and biasesabse we noticed that the network learns better when
it starts with small weights. The network is trained for thregiction task: the word following the input word in
the current sentence represents the target output. Thalgoi®ne output unit for each word in the alphabet, and a
special marker “enaf_sentence”.

The cost to be optimized is the cross-entropy error functida described in [12] , the cross-entropy function
forces the network to learn the probability distributioreothe next words, conditioned on the input symbol and the
network: P(z(t + 1) | N, z(t)). The network weights are updated on-line, with the backpgagion through time
algorithm. We noticed that for input sequences of more thantaundred words, batch training yields large update

3

¢ n =the number of hidden units = the number of
context units.

e m = the number of input units = the number of
output units.

one input unit per vocabulary word +
speci al end-of - sentence synbol

o= vy [] Joa| Feod

e I' = {v; ;} are the hidden to output weights.
o A= {qa,} are the input to hidden weights.

\wei dhis e B = {0} are the weights of the recurrent
b= satecn) links,
P ﬁ o from context to hidden units, where
e " context(t) = state(t — 1),t > 1 and

symorty || o[s LD el T) 295t Honteat (0) = 0.

one input unit per vocabulary word + eventual |y one state unit

speci al start-of-sentence synbol for each grammar variable L

Z(t) is the input vector at time > 1
e h(t) is the network state at time> 1
e 3(t) is the output vector at time> 1

el

(t

Figure 2: EIman network architecture and notation.

)
) = h(t — 1) is the context at time, ¢ > 1

values of the weights, thus leading quickly to saturatiodh immfurther learning. A learning rate of .1 and momentum
of .9 gave the best results in terms of network convergenoe.e&ch training set, we chose the number of hidden
units to be approximately equal to the number of states im#seciatedFA . The weight update equations for this
architecture and training regime are given in appendix A.

2.3 DFA extraction

One method used so far for extractin@pBA from aRNN, for example see [4] , is to assume that the network states
whose values are close &' form well separated clusters that represent the automatess We rely on the same
assumption and obtain tH&FA states by hierarchically clustering the network states @nbinary tree and then by
merging the siblings, provided they satisfy a distribuéibariterion. This additional criterion is necessary forotw
reasons: first, to stop the merging from reaching the rodtetiee, thus yielding a one-state automaton, and second
to correct eventual “network errors”, that is states thatehelose values but cannot encode equival2ifA states.
This criterion tests for the similarity of the distributisiover the state classes that follow and precede the tweeslass
The initial state classes are formed by the identical netwstates. We use a G statistic, which hag*alistribution

(see [2]) to test if there is a statistically significant difince in the two probability distributions. At the begimmof
merging, because there are too many degrees of freedomuthkan of states), and each state is usually preceded
and followed by only one state, respectively, the G statistinot effective. But as merging proceeds, irrespective
of the distributional criterion, the number of states intealass increases, while the number of degrees of freedom
decreases and the G statistic becomes effective and ellgrstiops the process.

Alternatively, we can view each word occurrence in a regldaguage as being indexed by the pair of states
between which it transits. The language alphabet beconeesethof terminal (word) instances that occur between
two states of its automaton. The language with the set of sigrthus modified becomesSzilard language of a
regular grammar. As described in [9] , this kind of langualyas a polynomial inference algorithm that induces the

grammar from a set of positive examples. Obviously, anyleedanguage can be “Szilard-ified” in this manner. If
we consider the network states at timtes 1 and¢ as the additional index on the current input symhbgt) we can
treat the unknown target language as Szilard:

e represent the word instane€t) as the concatenation of the previous and current networsS), i.(t))

¢ cluster the word instances, based on this representation

e consider each cluster a set of terminals that appear onlyamsitions between the same pair of states (the
Szilard property) and apply the inference algorithm to ¢ats theDFA ; conflate the occurrences of the same
word in a cluster into the original terminal.

The resultingDFA does not necessarily represent a Szilard language of aaregralmmar, because instances of
the same terminal can appear on different transitions. ggying technique obtains the “Szilard-ified” version of
an unknown regular language that contains all the senténdhs training set.

2.4 Results

We trained the network several times with each of the chosbAaguages. Three methods were usediBA
extraction:

¢ direct mapping of clusters of network states to DfeA states; this automaton is noted gtate DFA.

e direct mapping of clusters of the concatenation of the prgviand current network states to IDEA states;
this method tries to avoid “network errors™: two networktstaare further distinguished by part of the paths
that lead to them, namely by their previous states; this hasffect of a more conservative merging, that
eventually avoids clustering together two states that [psiecvalues accidentally (states that are not actually
equivalent in theraining set DFA. this automaton is noted thwev_state DFA

e constructing the Szilard version of the unknown target leage, as described in section 2.3; this automaton is
noted theSzilard DFA.

The results in table 1 compare the induced automata for efatte araining sets with the corresponding mini-
mizedtraining set DFA.

It can be noticed in table 1 that while for the smaller langutigetraining set DFAis almost always recovered,
for the larger language the resulting automaton generatag/more sentences than there are in the training set.
Some of these sentences, like “the boy feeds Mary and Jolme i ¢he language of the original CFG and represent
correct generalizations. Other sentences are plainlyriacy like “John lives walks lives lives hears.”, which is
generated by a cycle in the inducB&A .

3 What DFA is extracted from the trained network ?

If the network always starts in the same state at the beginoirthe sentence, then tRNN will reach the same
state for all unique prefixes of the sentences in the traisgtg For example, the prefix “a b” from the sentences “a
bc.”and “abd.” will lead the network to the same state.

b
S —%5 81 = fla,s0) — s9 = f(b,s1)

language | training set DFA state DFA prev_state DFA Szilard DFA
elmrl_d4 8 states 8 states 8 states 7 states
56 sent. 0 extra sent. 0 extra sent. 32 extra sent. (all correct generalizations) :
“the boy and John hear .
“the boy and Mary hear .
8 states 8 states 9 states
0 extra sent. 0 extra sent. 0 extra sent.
elmr2_d5 22 states 23 states 21 states 23 states
512 sent. 849 extra sent. : | 298 extra sent. : 4068 extra sent. :
18 states 20 states 21 states

1188 extra sent. :

“John and John
feed the boy "

“John chases Mary
and John walk .”

“John lives walks
lives lives hears .”

260 extra sent. :
“the boy feeds
Mary and John "

“the cat lives
the boy . “

“John and Mary "

1560 extra sent. :
“John and Mary
and John see ”

“John and John
who walk see ”

“the boys who live
hear Mary .

Table 1: The original and induced automata for the two irgiregy complex sub-languages of the CFG grammar.
The “extra sent.” in the induced automata is the number dfesees accepted by theBEA , which are not in the
corresponding training set. The sentences were genergiietplosing a limit ofd + 1 words on the sentence length,
whered is the maximum sentence length in the training set.

Because the network states belong in principle to a contimgpace, it is not likely that two states corresponding
to two different prefixes will be identical, unless the wdiglhre adapted to encode precisely such an equality. So,
for random weights, we can assume a one-to-one mapping eetthe set of sentence prefixes and the network
states, and name each state with its associated prefix.

It follows that theRNNwill construct the prefix tree of the training set, as it carsben in figure 3.

This implies that the network tries to learn the probabitigtribution over the next words conditioned on the
current prefix :

P(x(t+1) | N,z(t)) = P(z(t+ 1) | hy,z(t)) = P(z(t + 1) | hy)

For the simple example in figure 3 the network states @fe;, 4, hap, Pac, Pab.; hae.}. The states in a finite
automaton are also defined by the strings of words that |&feepaths that lead to them from the start state. For
example, in figure 3, statg is defined by “a”, whileg, is defined by the sef‘a b”, “a c’}. It follows that the
network states can be partitioned in groups correspondinbée states of the training set DFA. For the example in

figure 3 the network statesi,;, ho.} correspond to th®FA stateqg,.

@ 590,81
6026162 @@ @)
i f‘io,si

Figure 3: The prefix tree of the training sg¢a b .”, “a b .} and theDFA that represents it.

Due to the cross-entropy error function, the training pssceill adapt the network weights such that each state
will describe the probability distribution over the next ss. For a prefixw, this constraint is described by the
equationo (I" % h,,) = P(next_word | w). Because the sigmoid functienis injective, if two stringsw; andws
have the same distributions over the next words, then thveanktwill ideally assign two statefs,,, andh,,, such that
I % hy, = T hy,. It follows that a possible solution fs,, ~ h,,,. S0, the network will eventually assign similar
values for the states associated with prefixes that can wavid by the same words. This approximate merging
is reminiscent of the classic&FA minimization algorithm. The difference is that while tB#A minimization
algorithm, according to the definition of equivalent statessiders the entire paths from each state to the final state
the network is trained only with the words immediately faliag the two states and thus has a different criterion
for merging. This criterion, i.e. the probability distritton over the next words, is weaker than the finite automaton
state equivalence criterion, because it relies on lessnrdtion. It follows that it can lead to merges of states which
are not equivalent in thBFA of the training set and thus to generalizations beyond #tis s

For some training sets, for example like that in fig. 3, the twiteria are equivalent: the first word of the
path following a state uniquely identifies the path. For scabes, the network training process can converge to an
approximate encoding of the training $8fA : the network stategh,,,, h,, ...} corresponding to onBFA state
might converge to values close in metric space. On the otneal Hbecause the backpropagation algorithm may find
only a local minimum of the error function, it can happen that all the states with the same probability distribution
over the next words are assigned similar values. Thus ssfaé¢ are equivalent in the training $8€A might not get
close values and thus are not merged. These phenomena caerbie the examples in figures 4 and 5.

For the training sef“a b .”, “a c .”}, it can be seen in figure 4 how the encodings in the hidden [zfythe states

{hab, hac} @and{hgy., hqee.} CONverge towards the same values, respectively.

1.2 T T T T 1.2

—————————————

0.8 |-

06 [

hidden unit 1
hidden unit 2

0.4

02t

(o] o

Evolution of the first hidden unit during the first Evolution of the second hidden unit during the first

100 iterations. 100 iterations.

The values of the hidden units after 20000 iterations, forl athe prefixes in the training set:
prefix: “a” “ac” “ac.” “a” “ab” “ab.”

hiddenunitl 0.054 1.000 0.001 0.054 1.000 0.001

hiddenunit2 0.062 0.123 1.000 0.062 0.123 1.000
Figure 4: Convergence of the network states to an encoditigeatates of th®FA that represents the training set
for a network with two states.

For the small network in in figure 4, the evolution of states t& traced by examining the weight update
equations. In order to explain, for example, how the valdfahfirst hidden unit for the prefix statés, andh,.,
which have the same probability distribution over the neatds, vary together in time, as in figure 4, we look at the
weightsa, 1 anday, ;. The prefix states occur at time stepand4. Because these states are preceded by the same
stateh,, , the difference in their activation values is given only he tdifference of the two weights. It follows that
the two weights¢.; anda,; must also have the same variation in time. From the fact Heahetwork is reset at
time 3 and from the update equations in section A it followet the updates of these weights for one sweep in the

training set, are :

D o b (2)[1 = b (2)[{infln, (2) + D Braha(3)[1 — ha(3)infln, (3)]}

positive

part2

Aapy o (D1 = ha(H)[{infln, (4) + > Braha(B)[1 = ha(5))infln, (5)]}

positive v
part2

If we consider that at the beginning of the training the wesgire small, the second term can be ignored in both
equations. Thus, the more important termssarg!,,, (2) andinfi,, (4). Because the two prefix states are followed
by the same symbol, ', the two terms become :

o infly, (2) =m, — 271 m,50(2)

o inflyp (4) =7, — 271 71,505(4)

The values of the output units for the two states are:
o hegy 1 0j(2) = 0(3511 vijo(ae,i + const(B, context)))
o heger 1 0j(4) = 0(3i2y vijo(ay ; + const(B, context)))

From the above formulas it follows tha(2) ando;(4) cannot be far apart, because the weights and vy ; ,
which are the only non-equal quantities in the above forsyudae small. Furthermore, the differences in the output
values induced by these weights are reduced by the doubleatm of the sigmoid function. It follows that
eventually, the two values: f;, (2) andin fl;, (4) will have the same sign, and thus the weights andas ; will
change in the same direction. Once this happens, these tweujhinfluence the output in the same direction and
the process continues.

For larger training sets and networks, the evolution ofestatveights and output values becomes even more
difficult to follow, but it can be watched in experiments. Rbe language “elm2_d5” we look at three sets of
prefixes,{ “the cats who hear”, “the boys who seg; {“the cats who hear hear”, “the boys who see $eafid
{“Mary”, “the boy”}, each set being characterized by a different probabiligtritiution. The evolution of two
hidden units, arbitrarily chosen, in the states associafiitleach prefix is depicted in figure 5. It can be noticed
that the states in the same set did not all converge to cldsessaFor example, the states “the boy” and “Mary” get
different representations for those two units, despitér teanmon next word probability distribution. On the other
hand, the states of the first two sets do get similar valuésadth they should be distinguished.

1 T T T 0.9

the cats who hear
the cats who hear h
09 b the boys wh

T
ar — [N the cats who hear ——
ar ----- b Y N AN JEaN the cats who hear hear -----
P 4 08 & - N > '\ the boys whq see -----
e i I'the boys who séfe

fh Miary

ary ... -
the boy .. -~
T

ary ..
0.8 | the boy ... ---- | i b
0.7 1]t

0.7 |
0.6 !
0.6 i
05
05
0.4 i
0.4 i

0.3
0.3

0.2 |
0.2

0.1 01

o YET < s P
o] 5000

T s o) . o Pt A
15000 20000 o] 5000 10000 15000 20000

Figure 5: Evolution of hidden units 9 and 17 of the states@ased with prefixeq “the cats who hear”, “the boys
who see”}, {“the cats who hear hear”, “the boys who see $emid{“Mary”, “the boy”}.

4 Conclusions

We addressed In the experiments conducted, simple retureemal networks were trained with sets of sentences
from a regular language. The results indicate that the mitigdbiased towards encoding the minimum automaton
of the training set. For a very small network, an informallgsia of the learning process supports this finding. This
bias is more evident for smaller training sets and netwoF®s. more complex training sets, the network might not
be able to correctly minimize theaining set DFAand these errors may lead sometimes to correct generafizati

A The update equations for batch training for backpropagation through time and
cross-entropy cost function

The following formulas use the notations and apply to thevodt described in section 2.2. As in [12] , the cost
function for a set off” input-output vector pair§(x(t),d(t)),1 <t <T}is:
T

T
C= H Cy = H P(d(t) | £(t), N(t)).
t= t=
If the output units are seen as encoding the probability) = P(d;(t) = 1 | Z(¢), N(t)) then the logarithm of

the cost function isinC = Z Z d;(t)Ino;(t) +[1—d;(t)] In[1 —0;(t)] . It can be noticed that for the prediction
t=1j5=1
task,d(t),d(t + 1), ... are independent, given the network state, because thﬂ'sernabdes the prefix at each time

step. The partial derivative of th€, component of this function to a parametprs — = Z t) — 0j(t)] *

Onet,, (1)

5 , Wherenet,, (t) is the net activation of output unjt
Ui

The weight changes arern « Z 8 L with n € {vij, i Bri}-
U
By applying the chain rule as |n [14] , the weight changes @na stepr are:

e The weights from hidden to output unlt§— (1) — 0j(t)]hi(1)

o Letinfip, (t Z%,J — 0j(t)]. Letd; , be the function that is 1 when= i and O otherwise.

Onetp,, (t)

e The weights from input to hidden unit% = Z ha(t)[1 — ho(t)]inflpy, (t) Doy
a=1)t

Onetp,, (t)

e The recurrent weights from context to hidden un%s— Z ha(t)[1 — ha(t)])infln, (t) T
ki

a=1

The derivatives of the net activatiofset, } are defined iteratively:

e t=0: ha(O) =0 andang:,ha =0

Onetp,, (t) onety, (t — 1)
Jon, = 0jq21(t) + Z Bpabp(t)[1 — hy(t)}Tl,i
dnetp, (t) Onetp, (t — 1)
o) g, kit 1)+ Y Brahy (81— by (1)) el 2
OB o (t Zﬁb b (t b(t)] 9Brs

From the above equations it follows that:
Onetp, (t) 0 Onetp,, (t)

=1: = = 0j.q 1
. OBy.i © Oy iaz(1)
Onetp,, (t)
t=2 51ah
. T k(1)
Onetne®) _ 5 21(2) + Brahs(DIL — ha(D)an(1)
day

10

O (1) _ 5 (@) + Brahi (DI ha(U)]hi(1)

et (1) _ 5, a1(3) + Braha(@)[1 — A (D) + iy Sraho (21— ho(2))Bihi (DL — ha(D](1)

References

[1] A.Cleeremans, D. Servan-Schreiber, and J.L. McClell&hnite state automata and simple recurrent networks.
Neural Computation1:372—-381, 1989.

[2] P. R. CohenEmpirical Methods for Artificial IntelligenceThe MIT Press, 1995.

[3] J. L. Elman. Distributed representations, simple resntr networks, and grammatical structur&lachine
Learning 1992.

[4] C.L.Giles, C. B. Miller, D. Chen, G. Z. Sun, H. H. Chen, avidC. Lee. Extracting and learning amknown
grammar with recurrent neural networks. Aalvances in Neural Information Processing Systeni9@2.

[5] E. M. Gold. Language identification in the limilnformation and contrql10:447-474, 1967.

[6] E. M. Gold. Complexity of automaton identification fronivgn data. Information and contrgl 37:302—420,
1978.

[7] Michael Kearns and Leslie Valiant. Cryptographic liatibns on learning boolean formulae and finite au-
tomata.Journal of the ACM41(1):67-95, 1994.

[8] John F. Kolen. Fool’s gold: Extracting finite state mas from recurrent network dynamics. Aalvances in
Neural Information Processing Systemdl894.

[9] E. Makinen. Inferring regular languages by merging montinals. Technical Report A-1997-6, Department of
Computer Science, University of Tampere, 1997.

[10] Christian W. Omlin and C. Lee Giles. Constructing detmistic finite-state automata in recurrent neural
networks. Technical report, Computer Science Departnieemsselaer Polytechnic Institute, 1994.

[11] Leonard Pitt and Manfred K. Warmuth. The minimum cotesis dfa problem cannot be approximated within
any polynomial.Journal of the ACM40(1):95-142, 1993.

[12] D. E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin.cBaopagation: The basic theory. Backpropa-
gation: Theory, architectures, and applicatiorisrlbaum, 1993.

[13] H. T SiegelmannTheoretical Foundations of Recurrent Neural NetwolRBD thesis, Rutgers, 1992.

[14] P. N. Werbos.The roots of backpropagatiodohn Wiley & Sons, Inc., 1994.

11

