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Abstract

Recent developments in philosophy, linguistics, devel-
opmental psychology and arti�cial intelligence make it
possible to envision a developmental path for an ar-
ti�cial agent, grounded in activity-based sensorimotor
representations. This paper describes how Neo, an ar-
ti�cial agent, learns concepts by interacting with its
simulated environment. Relatively little prior struc-
ture is required to learn fairly accurate representations
of objects, activities, locations and other aspects of
Neo's experience. We show how classes (categories) can
be abstracted from these representations, and discuss
how our representation might be extended to express
physical schemas, general, domain-independent activi-
ties that could be the building blocks of concept forma-
tion.

Introduction

Our goal is to build a baby, or rather, an arti�cial agent

who lives in a simulated environment and who even-

tually learns to think like a three year old. A virtual

infant, if you like. The abilities we want our agent,

which we call Neo, to develop include learning, planning,

language, an organized memory containing structured

knowledge, and attention. Central to these abilities is a

conceptual structure, an ontology, a way to \carve the

world at its joints." Given a conceptual structure, we

can see a developmentalpath to more advanced thought,

including emotion and consciousness. As Neo develops,

we expect to learn much about the nature of accessi-

ble representations, the functions of categories, and the

representation and roles of goals. We will elucidate the

relationship between activity, attention, memory and

learning. We hope to demonstrate that an agent can
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develop sophisticated knowledge from minimal begin-

nings. The goal of this paper is more modest, however:

to show that Neo can acquire concepts and categories

from interacting with its environment.

Categorization, as Lako� points out, is central to hu-

man thought (Lako� 1984). It is also central to Lako�

and Johnson's challenge to Objectivism (Johnson 1987;

Lako� & Johnson 1980; Lako� 1984), the dominant view

in Western philosophy that there is an objective way

to represent the world and reason about it. In
uenced

by Eleanor Rosch's research on categorization, Lako�

and Johnson argue that categories are based less on

objective features such as color, size, and shape, than

on interactional properties and relationships, such as

\graspable" and \�ts-in-my-mouth," which character-

ize how an agent interacts with its environment. At the

same time, AI researchers such as Agre (Agre 1988),

Chapman (Chapman 1991), and Ballard (Ballard 1989)

have argued for deictic or agent-centered representa-

tions. Lako� and Johnson make a convincing case that

adult conceptual structures are grounded in primitive

interactional knowledge that could very well be acquired

by infants. Thus, in contrast with Piaget's theory of

developmental stages (Ginsberg & Opper 1988), we can

now envision a continuous developmental trajectory|

for conceptual knowledge, at least|beginningwith sim-

ple, interactional primitives in infancy (relationships

among actions and objects in the physical world, for ex-

ample) and becoming more elaborate through abstrac-

tion and metaphorical extension as the agent develops

(Lako� & Johnson 1980). Indeed, Mandler's work, to

which we owe much, outlines such a developmental tra-

jectory and the empirical evidence for it (Mandler 1988;

1992). One contribution of the current paper is to show

that a simulated infant can learn concepts in roughly

the way Mandler suggests real infants learn.

There is a strong temptation to see in the infancy

literature evidence of nativism, the idea that infants

are born with conceptual structures. Obviously, babies'

minds have some structure at birth, but we are anti-

nativist, minimalist in our approach. We do not agree

that babies must be born with theories of the physical



world (Carey & Gelman 1991), and in fact we show that

Neo can learn concepts given very little prior structure.

Baby World

Neo is a virtual agent who lives in a simulated environ-

ment. Babyworld implements Neo's sensations, mental

representations, mental and physical activities, and the

behavior of objects and other agents that interact with

Neo. Babyworld has two parts: one, which we call Neo,

implements everything that Neo does, including learn-

ing, moving, looking, crying, and so on. The other part,

called StreamsWorld, represents Neo's internal and ex-

ternal environment, and it implements events that hap-

pen in and around Neo and in response to Neo's actions.

Notably, StreamsWorld represents Neo's sensations of

its external environment and also internal states such

as hunger. No distinction is made between \inside" and

\outside"; Neo must learn it.

Neo senses its environment through a collection of

streams, which are divided into discrete time steps. On

each time step t, a stream �i holds a token � , that is,

�i;t = � . Tokens represent sensations or processed per-

cepts. For example, one token is \rattle-shape," and it

is placed in the appropriate stream whenever Neo's eyes

point at an object that is shaped like a rattle; that is,

�sight�shape;t =rattle-shape. (We will discuss the bias

this tactic engenders in a later section.) The streams

that represent Neo's internal sensations include an af-

fect stream that contains tokens such as happy and sad,

a pain stream, a hunger stream, and somatic and haptic

streams that are active when Neo moves and grasps.

The Babyworld simulator is simple and probabilistic.

For example, Neo gets hungry some time after eating,

it cries when it is unhappy or in pain; when Neo cries,

Mommy usually visits, unless she is angry at Neo for

crying, in which case she stays away. Neo falls asleep

intermittently; it can move its arm and head, and grasp

several objects, including three rattles, a bottle, a mo-

bile, a bunch of metallic keys, and a knife. The latter

causes pain. The rattles make noise when shaken.

Currently, Neo is incapable of anything we would call

volition. If Neo's eyes alight on a rattle then Neo will

grasp the rattle with some probability. However goal-

directed this might appear, Neo's mind contains nothing

that could be interpreted as a goal.

How Neo Learns

What does Neo's mind contain, then? Fluents, mostly.

Fluents represent things that don't change, or that

change in highly regular, predictable ways. Fluents are

a step away from the state-based representations of AI

planning research, such as situation calculus, toward

script-like representations. Fluents explicitly represent

events that have duration; in fact Neo learns the mean

and variance of the duration of each 
uent. The sound

made by a rattle is a 
uent, so is the sensation of hold-

ing the rattle, and so are the visual sensations of the

shape and color of the rattle. Of course, the concept

\rattle" has all these components, so somehow, 
uents

for the color, shape, sound and texture of a rattle must

be linked up in a single 
uent. Neo accomplishes this,

building larger 
uents from smaller ones, with two sim-

ple learning rules that count cooccurrences. First, if

Neo notices that two 
uents often start and stop simul-

taneously, it infers that the 
uents are parts of a larger

one. This rule learns 
uents that represent objects and

states. Second, if Neo notices that one 
uent often fol-

lows another, it infers that both are parts of a larger


uent that represents an activity. The word \often" in

these rules hides a statistical inference that 
uents cooc-

cur more frequently than one would expect by chance if

they were independent.

The important features of 
uents as representations

are that they represent states or processes with tem-

poral extent (even objects are represented as things

that exist over time), they are composable, and they

are learned by counting cooccurrences. Although the

simplest 
uents represent sensations, it's important to

recognize that 
uents are not identical with sensations.

Sensations are tokens in streams; 
uents are representa-

tions stored in memory. Streams are the locus of Neo's

sensory experience, 
uents are the locus of Neo's knowl-

edge. And although Neo's earliest 
uents are just copies

of its sensations, they soon become aggregated and ab-

stracted.

All the examples in this paper are from a single \run"

of Neo, lasting 30,000 time steps. (A time step corre-

sponds to one second of real time. The run we describe

here thus corresponds to roughly eight hours of Neo's

life.) Fluents are learned gradually: It might take hun-

dreds or thousands of time steps to �nd enough cooc-

currences to create a 
uent, and composite 
uents are

obviously learned after their components.

Having said Neo combines small 
uents into larger

ones, we should say where the small 
uents come from.

One approach is to say the smallest 
uents are token

values that persist in streams. For example, red and

rattle-shape are each persistent tokens because Neo

tends to look at objects for several time steps before

shifting its gaze; if Neo is currently seeing something

red, then it will probably see something red on the next

time step. Our �rst implementation of Neo had individ-

ual, persistent tokens as the smallest 
uents, but there

were too many ways to combine these 
uents, and most

produced larger 
uents that didn't correspond to any-

thing in Neo's environment. We decided that the small-

est 
uents should be larger than individual tokens. And

if the smallest 
uents contained, say, two tokens, from

di�erent streams, then we could use the covariance of

streams to focus Neo's attention on pairs of tokens that



\go together," as we will now describe.

Scopes

The �rst things Neo learns are not 
uents, but rather,

pairs of streams in which to look for 
uents. These pairs

are called scopes. A stream �i is said to change state at

time t, denoted �(i; t), when �i;t�1 6= �i;t; that is, �i

changes state at time t when it contains a di�erent token

at time t than it did at time t � 1. Conversely, �(i; t)

means the stream doesn't change state: �i;t�1 = �i;t.

Neo learns a scope, sij , when streams �i and �j change

together often. Said di�erently, Neo learns sij when the

joint event �(i; t) & �(j; t) occurs frequently relative to

the joint events �(i; t) & �(j; t) and �(i; t) & �(j; t).

To assess the relative frequencies of these events, Neo

uses contingency tables like this one:

�(sight-color,t) �(sight-color,t) total

�(sight-shape,t) 2996 945 3941

�(sight-shape,t) 826 25232 26058
total 3822 26177 29999

This says that the streams sight-shape and sight-

color changed state simultaneously 2996 times, and

one changed when the other didn't 945 + 826 = 1771

times. To assess the strength of association between

sight-shape and sight-color we square the frequency

in the �rst cell of the contingency table (2996) and di-

vide by the product of the �rst row and �rst column

margins (3941 and 3822, respectively). The maximum

value for this statistic is 1.0, and for the table above it

is 29962=(3941� 3822) = :596.1

Neo maintains contingency tables for all pairs of

streams.2 When the measure of association for a ta-

ble exceeds a threshold, a scope is created. Table 1

shows the top ten scopes learned by Neo in a run of

30,000 timesteps (i.e., the scopes with the highest mea-

sures of association), and also the ten worst scopes. No-

tice that the sight-shape and sight-color streams are

more highly associated than any except do-sleep and

sleep. Other high-ranking scopes are (sound voice),

1Neo could use other statistics, such as �
2 and G, pro-

vided the contingency table is scaled to a constant total,
preserving the proportions. (Scaling is necessary because �

2

and G are not independent of sample size.) In practice, Neo
learns the same scopes, and ranks them similarly, irrespec-
tive of how it measures association in its contingency tables.

2While this may seem like a lot of bookkeeping, especially
as the number of streams grows, bear in mind that maintain-
ing a contingency table is a very simple operation. All the
contingency table updates could be done in unit time on a
parallel machine. At higher levels of processing, operations
may become more complex and require non-local data. In
that case, we view it as the purpose of the attentional mech-

anism to keep processing per unit time down to reasonable
level. Deciding what particular events in the environment
require attention, i.e. merit being assigned computational
resources, is a future direction of our research.

whichmakes sense because changes in the sound stream

are often produced by changes in the voice stream;

and (tactile-mouth mouth), which captures the fact

that when Neo starts to mouth (i.e., chew on) an ob-

ject, it gets tactile sensations in its mouth. The worst

scopes represent pairs of streams that are not associ-

ated. For example, there is no association between

sleeping and eating, and none between moving the arm

(do-arm) and hunger. Note that many scopes include

do-x streams; for example, (do-voice voice). These

are the components of Neo's actions: the do-voice part

represents the sensation of attempting to use the voice,

and the voice part represents the sensory feedback from

actually using the voice. Sometimes, Neo will experi-

ence do-voice but not voice; for example, Neo might

try to make a sound (do-voice) but be unable to be-

cause it has an object in its mouth.

Before Neo learns any scopes, its world is a \bloom-

ing, buzzing confusion" of changing token values in 26

streams. Scopes \chunk" streams into covarying pairs.

Without scopes, Neo has to learn 
uents by searching

for associated token values across all 26 streams. For ex-

ample, Neo has to consider associations between (sight-

color red) and, for instance, (sleep asleep), (hunger

full) and (voice screaming). With scopes, Neo can

limit its search for associations. Suppose Neo learns

the scope (sight-color sight-shape) but it learns no

other scopes relating sight-color to any other stream.

Then, it should look for associations between (sight-

color red) and tokens in the (sight-shape) stream,

but it needn't look for associations in any other streams.

Empirically, scopes make an enormous di�erence in

the number and quality of the associations Neo learns.

Without scopes, Neo learns many thousands of mean-

ingless associations between token values; with them,

Neo learns a few hundreds of associations that corre-

spond to objects and activities in its environment.

Base Fluents

Whereas scopes represent the tendency of streams to

change state simultaneously, Neo's smallest 
uents,

called base 
uents, represent cooccurring tokens within

scopes. Suppose stream �i contains a at time t� 1 and

b at time t. Then we say token a stops in stream i

at time t � 1, denoted a(i,a,t-1), and token b starts in

stream i at time t, denoted `(i,b,t). Now suppose Neo

turns its head and its eyes alight on a red rattle. Neo

will detect two simultaneous events, `(sight-color,red,t)
and `(sight-shape,rattle-shape,t). Sometime later,

Neo might look somewhere else, which will gener-

ate two simultaneous stop events, a(sight-color,red,v)
and a(sight-shape, rattle-shape,v). Simultaneous start

events and stop events are evidence that a single

object|in this case a red rattle|or a single activity,

is making its presence felt in two streams. Of course,

two unrelated events could occur simultaneously in two



10 Best Scopes measure of 10 Worst Scopes measure of

association association

do-sleep sleep 1.0 sleep arm-x-angle � 0

sight-color sight-shape .596 arm-x-angle arm-y-angle � 0

sound voice .533 do-sleep arm-x-angle � 0

arm arm-speed .453 do-sleep eat � 0

do-mouth mouth .326 sleep eat � 0

do-voice voice .325 tactile-skin tiredness � 0

tactile-mouth mouth .315 do-arm hunger � 0

sound do-voice .276 do-sleep arm-y-angle � 0

tactile-mouth do-mouth .274 sleep arm-y-angle � 0

do-head head .254 tactile-mouth hunger � 0

Table 1: The ten best and ten worst scopes learned by Neo in 30,000 timesteps.

streams, but this sort of coincidence is less likely than

the coincidence of related events.

Neo looks for associations between start and stop

events within scopes. For example, having the scope

(sight-color sight-shape), Neo can try to associate

red and rattle-shape. But if Neo lacks a scope for,

say, sight-color and arm-speed, then it will never try

to associate red with fast. Thus scopes prevent Neo

from even considering many meaningless base 
uents.

Contingency tables count the cooccurrences of start

and stop events, and assess whether start and stop

events happen simultaneously signi�cantly often. For

example:

`(sight-color,
red,t)

`(sight-color,

red,t)
total

`(sight-shape,
rattle-shape,t)

65 27 92

`(sight-shape,

rattle-shape,t)
237 1931 2168

total 302 1958 2260

Of the 2260 times sight-color and sight-shape

changed together, rattle-shape became active 92

times, both rattle-shape and red became active 65

times, and red became active but rattle-shape didn't

237 times. The conditional probability of rattle-shape

starting clearly depends on whether something red or

non-red started; these probabilities are 65=92 = :71

and 27=92 = :29, respectively. Conversely, the condi-

tional probability of something red starting depends on

whether something rattle-shaped started. In short, red

and rattle-shape are associated. The strength of their

association can be measured many ways; one was de-

scribed in the previous section. Here, we use a modi�ed

G statistic. Because G is sensitive to sample size, all

contingency tables are �rst scaled to maintain their pro-

portions but have their totals equal 100. To scale the

table above, each cell value and marginal total would be

divided by 226. Then the G statistic is calculated for

the scaled table in the usual way.

Neo accepts a base 
uent when its contingency ta-

ble is signi�cant, as measured by the G statistic. Ac-

tually, the table above tells us only that red and

rattle-shape often start simultaneously, we also need

to establish that they often end simultaneously. For

this, Neo maintains another table like the previous

one for the events a(sight-shape,rattle-shape,t),a(sight-
color,red,t), and their complements. When Neo has ev-

idence that red and rattle-shape both start and stop

together in their respective streams, and do so more

often than would be expected by chance if they were in-

dependent, then it forms the base 
uent ((sight-shape

rattle-shape)(sight-color red)).

To summarize the story to this point, Neo learns

scopes, or pairs of streams that often change together.

As soon as it has learned a scope, Neo can use it to

learn base 
uents, which are scopes instantiated with

particular token values, such as ((sight-shape rattle-

shape)(sight-color red)). And as soon as Neo has

learned some base 
uents, it starts combining them into

larger structures called composite 
uents.

Composite Fluents

Whereas base 
uents represent associations between

cooccurring token values in streams, composite 
uents

represent cooccurring 
uents. Neo currently forms two

kinds of composite 
uents. Conjunctive 
uents are gen-

erated when 
uents F1 and F2 start together signi�-

cantly often, and they also end together signi�cantly

often. Clearly, conjunctive 
uents are like base 
uents.

However, base 
uents combine token values into 
uents,

whereas conjunctive 
uents combine other 
uents; and

conjunctive 
uents are not constrained by scopes. Con-

tingency tables, like those described earlier, tabulate

the frequencies of the joint events (` F1 & ` F2),

(` F1 & ` F2), (` F1 & ` F2) and (` F1 & ` F2). The

modi�ed G statistic, described above, tells Neo whether

the association between F1 and F2 is signi�cant. If so,

Neo forms the 
uent (AND F1 F2).



The second kind of composite 
uent is formed when

one 
uent starts in the context of another one. Sup-

pose Neo is holding a rattle, and then it starts to chew

on the rattle (called \mouthing"). While it is hold-

ing the rattle, the 
uent ((tactile-hand wood)(hand

close)) is active, and when it starts mouthing, the 
u-

ent ((tactile-mouthwood)(do-mouthmouth))will

become active. The latter 
uent starts in the context of

the former. If this happens signi�cantly often then Neo

will form the context 
uent

(CONTEXT ((tactile-hand wood)(hand close))
((tactile-mouth wood)(do-mouth mouth)))

The contingency tables for context 
uents are up-

dated in a slightly di�erent way from previous tables.

When 
uent F2 starts at time t + i, Neo checks to see

whether 
uent F1 is active, and if so, it updates the

�rst cell of the contingency table, (` F1; t & ` F2; t+ i).

If F2 starts and F1 isn't active, then Neo updates the

third cell of the table, (` F1; t & ` F2; t + i). If F1 is

active but F2 doesn't start within a window of i time

steps, then Neo increments the second cell of the table,

(` F1; t & ` F2; t+ i). The modi�ed G statistic tells

Neo whether F2 starts in the context of F1 more often

than would be expected by chance if F1 and F2 were

independent.

Chains

Context 
uents can be chained together to form multi-


uent sequences. Consider the previous context 
uent

and the following one:

(CONTEXT ((tactile-mouth none) (voice cry))
((tactile-hand wood) (hand close))

These 
uents share a common 
uent, ((tactile-hand

wood) (hand close)), so they may be composed into

a chain:

(CHAIN ((tactile-mouth none) (voice cry))
((tactile-hand wood) (hand close))
((tactile-mouth wood)(do-mouth mouth)))

In words, Neo had nothing in its mouth and was crying,

then it grabbed something wooden, then it started to

mouth something wooden. Now consider another, very

similar, chain:

(CHAIN ((tactile-mouth none) (voice cry))
((tactile-hand plastic) (hand close))
((tactile-mouth plastic)(do-mouth mouth)))

The only di�erence between these chains is the ob-

ject that Neo grabs and mouths: in the �rst case it is

wooden, in the second, plastic. We may form a class of

things that Neo can grab and mouth. The chains don't

say exactly which objects are in the class, but we know

they are either wood or plastic, and they are graspable,

and mouthable.3

3In general, we don't know that the object being grabbed
is identical with the object being mouthed, but the Neo sim-

Classes

Note that \graspable" and \mouthable" are interac-

tional properties (Lako� 1984) that characterize Neo's

activities in its environment. Unlike \texture"|wood

or plastic|they are fundamentally subjective. What's

graspable by one agent isn't necessarily graspable by an-

other. Whereas texture is an inherent property of an ob-

ject, graspable is a property of the object and the agent

who may try to grasp it. Objective features such as tex-

ture have gotten a bad name because they appear inad-

equate for conceptual activities such as forming classes

and judging similarity; for instance, it is di�cult, per-

haps impossible, to de�ne a category in terms of neces-

sary and su�cient objective features. One is tempted

by the conjecture that categories might be de�ned in

terms of necessary and su�cient interactional features,

instead. However, we will try to show that categories

are best de�ned in terms of activities, and the appar-

ent superiority of interactional features is due to them

describing activities better than objective features.

Consider a conceptual activity such as judging

whether a cup and a ladle are similar or di�erent. We

immediately want to ask, \Similar or di�erent in what

context?" As devices for transferring liquid, cups and

ladles are similar; as containers to drink from, they re-

quire di�erent motor schemas; as something to serve

co�ee in at an elegant dinner, they aren't similar. Note

that the required context in which we judge similarity

is often an activity, often purposeful, and often agent-

centered. What's central to judging the similarity of ob-

jects is knowing which activities the objects are involved

in. Activities seem to selectwhich features of objects are

relevant to judgments of similarity; these features will

sometimes be objective, often interactional.

Why would Neo even want to have concepts, in par-

ticular classes? In a nutshell, because they capture the

structure of Neo's environment. Classes enable Neo to

make predictions about never before seen situations. If

Neo had formed the class of \rattle", and was given

a new rattle that resembled its old ones in some way,

it could immediately infer that this new object can be

grasped, held, and may even make a noise when shaken.

All the entailments of \rattle," all the things a rattle

can be used for and how it is expected to behave, are

immediately transferable to this new object. One can

also imagine that once a class has been established, a

symbol could be fairly easily attached to it. This sym-

bol makes it possible for an agent to communicate its

experience succinctly, with just one \word". It can also

reason about its experiences, for example during plan-

ning, at a level higher and more easily manageable than

the raw sensory data.

Neo's activities are not purposeful because Neo has

ulator is simple enough that this general problem doesn't
arise. It will, eventually.



no goals, but even so, Neo's activities|represented as

chains|are a basis for judging similarity and forming

some classes. In fact, although Neo learns chains, we

are responsible for using these chains to identify features

and form classes. This is how we do it: We match up

chains that have the same stream names in the same

order, creating an abstract chain, then form classes of

the token values. Consider these chains:

(CHAIN ((do-arm resting) (arm resting))
((do-hand close) (hand close))
((tactile-mouth wood) (mouth mouthing)))

(CHAIN ((do-arm resting) (arm resting))
((do-hand close) (hand close))
((tactile-mouth plastic) (mouth mouthing)))

(CHAIN ((do-arm move-rt) (arm move-rt))
((do-hand close) (hand close))
((tactile-mouth wood) (mouth mouthing)))

(CHAIN ((do-arm move-rt) (arm move-rt))
((do-hand close) (hand close))
((tactile-mouth plastic) (mouth mouthing)))

Looking only at stream names (e.g., do-arm, arm, do-

hand, ...) we see that all these chains are instances

of this abstract chain: (do-arm arm) ! (do-hand

hand)! (tactile-mouthmouth). What we're seeing

in the four chains, above, is two activities:

resting arm!
closing hand !

mouthing something

right-moving arm !
closing hand !

mouthing something

and the \something" in each activity is either wood or

plastic. It may not be immediately apparent how these

activities identify classes of objects, but in fact the ob-

jects that can participate in these activities are just

those objects that can be grasped, mouthed, and are

either wood or plastic. We know, because we built the

Neo simulator, that these objects include Neo's rattles

and bottles, but not the mobile, Mommy, or Neo's own

hand. (Incidentally, if Neo had run longer, it might

have learned that its keys can also participate in the

abstract chain, above, in which case the instantiated

chains would have included a 
uent ((tactile-mouth

metallic)(mouth mouthing)).) The point is that

the class of objects that can participate in an activity

is identi�ed by interactional and objective features|

graspable, mouthable, wooden, plastic or metallic.

Although Neo is currently not capable of it, we can

imagine showing Neo a novel object, say, a small wooden

block, that Neo would classify with its rattles, bottles

and keys on the basis of being graspable and mouthable,

and wooden, plastic or metallic. Similarly, if we show

Neo a graspable but immovable wooden object, Neo

might put it in the same class as its crib bars. Again,

this classi�cation would be made on the basis of activi-

ties. When Neo interacts with the new object it would

form a chain that includes ((do-hand close) (hand

close)) ((do-arm move-rt)(arm not-move))|after

grasping, Neo tries to move its arm but it cannot. As-

suming that Neo has learned a similar chain in its in-

teractions with the crib bars, it will be able to form

the class of objects that can be grasped but cannot be

moved.

What Neo can do is less spectacular, but promis-

ing. One of the most interesting abstract chains is only

two 
uents long: ((do-head head) ! (sight-shape

sight-color)). This chain identi�es many of the physi-

cal objects in Neo's environment. For example,

(CHAIN ((do-head lookup)(head lookup))
((sight-shape mobile-like)

(sight-color green)))

This chain says, when Neo directs its head to look up,

and actually looks up, then it will see the green mobile.

Here are two more examples:

(CHAIN
((do-head look+90)(look +90))
((sight-shape crib-like)(sight-color white)))

(CHAIN
((do-head look-90)(look -90))
((sight-shape crib-like)(sight-color white)))

In words, when Neo looks either to its extreme left (+90)

or extreme right (-90) it sees its crib.

Remarkably, 
uents that represent the color and

shape of objects do not appear in any other chains

learned by Neo; in other words, the ((do-head head)

! (sight-shape sight-color)) chain represents an ac-

tivity that de�nes the class of objects based on their

appearance after a head turn.

Classes of actions can be learned in the same way. For

example, here are four chains that Neo learned quickly

and observed frequently:

(CHAIN ((do-arm move-up) (arm move-up))
((sight-movement fast) (arm-speed fast)))

(CHAIN ((do-arm move-dn) (arm move-dn))
((arm-movement fast) (arm-speed fast)))

(CHAIN ((do-arm move-rt) (arm move-rt))
((sight-movement fast) (arm-speed fast)))

(CHAIN ((do-arm move-lf) (arm move-lf))
((sight-movement fast) (arm-speed fast)))

The abstract chain is (do-arm arm) ! (sight-

movement arm-speed), and it de�nes a class of ac-

tions in which, in the context of an arm movement, Neo

sees the arm moving fast.

Physical Schemas

We have seen how 
uents can be used to de�ne activ-

ities (by abstracting regularities in streams over time),



and how a set of related 
uents can be used to implic-

itly de�ne a category such as \graspable object." This

type of conceptual knowledge is still relatively speci�c

to Neo's capabilities and the particulars of Neo's envi-

ronment. What if it were possible to abstract an even

more general kind of 
uent that represents activities or

classes across domains? We call such data structures

physical schemas, and postulate that they are central

to the development of a cognitive agent. Their uses

include providing a basis for communication between

agents (by establishing a common frame of reference),

forming the building blocks for further abstract cate-

gories, and bridging the gap between an agent's senso-

rimotor behavior and its higher level cognitive skills.

Conisder as an example for a physical schema the no-

tion of \containment". It looks deceptively simple, but

actually covers a great number of situations, at varying

levels of abstraction. In terms of an agent's activities,

there is a di�erence between containing a block in a box

(which will generally stay there if left alone) and con-

taining a 
ock of sheep within an unfenced �eld, which

requires constant intervention by the agent. Di�erent

contexts will require di�erent containers: A cage will

contain an animal, but not a liquid. There are even

such concepts as containing a thought within one's head,

which doesn't even involve a palpable object. Lako� and

Johnson have proposed that abstract concepts are un-

derstood by metaphorical extension from basic schemas

such as this one. You understand what it means to con-

tain a thought within your head by relating it to the

process of containing something within your hand, for

example. In this view, people communicate and reason

using such metaphors, which are derived from the physi-

cal structures of our bodies and the way we interactwith

the world. By giving us the ability to redescribe our

world in more familiar terms, they make understanding

it possible.

Could a concept like containment be represented with


uents? We believe so, although a great deal of work

clearly remains to be done. The key is noticing that

once again, physical schemas like all other concepts are

de�ned via an agent's activities. Containing something

could be thought of as being able to push it back into a

speci�ed state should it move out of that state. If Neo

had simple 
uents for \moving" and \pushing" (simple

since they correspond to basic e�ector actions, and are

easily described physically), it should be able to learn

that when it can successfully and repeatedly keep an

object within a state by pushing it (applying force to

it), it has \contained" that object.

Like containment, all physical schemas share the

property of being domain general, grounded in physi-

cal activities and physical relationships such as \move,"

\push," and \in," while providing a very abstract con-

cept. Further examples are \support", \control", and

\cause". The total number of such schemas may not be

very large. It is our hypothesis that these concepts are

so generally useful that they will emerge in any intelli-

gent agent placed in any reasonable domain.

What Neo Knew and What It Learned

It is sometimes argued that real babies are born with

\faculties" for physical and spatial reasoning (Carey &

Spelke 1994), language (Pinker 1995), even reasoning

about living things (Keil 1994). Nobody believes that

much can be learned without constraints from percep-

tual systems, e�ectors, and prior mental structures, so

the question is not \whether" but \how much." Al-

though we eventually expect to show that Neo can ac-

quire a rich conceptual structure from minimal begin-

nings, at present, we can show no such thing, because

Neo's conceptual structure is quite poor|Neo learned

hundreds of 
uents and chains but these produced very

few classes of objects and activities|and Neo's prior

structure is not insigni�cant. Let us review what Neo

was born knowing:

Streams and Tokens. Neo experiences its world

through streams, and streams contain tokens such as

red and hungry.

A Notion of Events. Neo's learning methods all fo-

cus on start (`) and stop (a) events. Static streams or

uents don't interest Neo's learning methods.

Methods to Learn Scopes and Base Fluents. Neo

is born with a method to �nd correlations among start

and stop events in streams. The resulting structures,

called scopes, constrain the simplest 
uents Neo learns.

Base 
uents are statistically signi�cant instantiations of

scopes with tokens. Neo is born with a method, based

on contingency tables, for learning base 
uents.

Methods to Learn Composite Fluents. The

method for learning conjunctive 
uents (and base 
u-

ents) is based on the idea that simultaneity is rare, so

when it is observed, it probably has a single cause. The

method for learning context 
uents and chains is based

on the idea that events sometimes follow others more of-

ten than expected by chance if they were unrelated, so

when this is observed, the events are probably causally

related. The learningmethods for base, conjunctive and

context 
uents all rely on contingency table analysis,

but the tables are set up slightly di�erently.

Now consider what Neo learned:

� It learned that most of the regularity in its environ-

ment takes place in 30 pairs of streams, less than 10%

of the (26�25)=2 = 325 pairs of streams that it might

have focused on.

� It learned base 
uents corresponding to the shape and

color of every object in its environment.



� It learned the permanent locations of the green mo-

bile (directly overhead) and the crib bars (to the ex-

treme left and right of its �eld of view). No other

objects have permanent location, because Neo can

move them, but interestingly, it learned locations for

objects that it let sit for a long time.

� It learned activities, such as grasping an object and

mouthing it, or moving its arm and seeing its arm

move.

� It almost learned conditions. For example, it

learned a chain that includes ...((do-hand open)

(hand open)) ((tactile-mouth skin) (mouth

mouthing)), but it has no way to learn that the

�rst 
uent is a condition for the second|that the

hand must be open to be mouthed.

� It learned chains from which we, the authors, ab-

stracted classes that make sense in Neo's environ-

ment, such as the class of objects that can be grasped

and mouthed, and the class of activities that end in

seeing the arm moving fast.

Keep in mind that Neo's actions are largely random:

when it grabs an object it can mouth it, but it's just as

likely to drop it, or move its head. Using the conceptual

structure learned to guide further knowledge acquisition

is the next step in our research program. The only struc-

ture in Neo's actions is provided by conditions (e.g., it

cannot mouth an object it hasn't grasped, and it can-

not mouth its hand unless the hand is open) and by

a handful of simple behavioral dependencies built into

the simulator (e.g., it sometimes grabs what it looks at,

and it cries if it gets hungry). Keeping in mind also that

Neo ran for only 30,000 time steps, it seems to us that

it learned quite a lot.

Related Work

Attempts to build complete cognitive systems such as

the one we are proposing have been rare; some exam-

ples follow. Andreae viewed his PURR-PUSS sys-

tem as a general approach to building an intelligent

agent (Andreae 1977). It resembles Neo in that it is

based on few general design principles, primarily trying

to predict its future sensory experiences and exploring

those aspects of its environment that it cannot fully ex-

plain. Unfortunately, though, PURR-PUSS was lim-

ited by its somewhat rigid approach and the lack of

available computing power at the time. Soar (Laird,

Newell, & Rosenbloom 1987) is also viewed by its de-

signers as an architecture for intelligence and a theory

of cognition. However, Soar requires a lot of built-

in structure, e.g. production rules and ultimate goal

states, and places no value on learning through interac-

tion. The learning it does, called chunking , is limited

to storing problem solving experiences for future use.

Neo, on the other hand, attempts to build structures

that will help it explain its environment. Brooks' Cog

project has a lot in common with Neo, both in motiva-

tion and general design principles (Brooks & Stein 1993;

Brooks 1996). He views cooccurrence of events as key to

learning, and emphasizes the importanceof embodiment

for the emergence of human-like behavior and concep-

tual knowledge. We di�er fromBrooks, however, in that

we do not feel that a physical embodiment|as opposed

to simulation|is absolutely necessary.

The principle of interactivity in learning has been

�nding growing support in recent years even in AI circles

(e.g. (Kuipers & Byun 1991; Mataric 1992)). Drescher

has taken Piaget's principles of elaboration and accom-

modation to heart (Drescher 1991). His system elabo-

rates \context{action{result" triples into schemas that

resemble the 
uent representationwe use, although they

are somewhat less general and not as directly grounded

in sensory experience. The agent forms new concepts by

creating \synthetic items" to denote unknown aspects

of the world that are responsible for some regularity in

the observed schemata.

There is a vast amount of work in the �eld of Arti�-

cial Life describing aspects of animal behavior and an-

imal interaction within societies. Into this broad area

falls Bates' work on arti�cial characters (Bates 1992;

Reilly & Bates 1992). There are even some very realis-

tic and fairly completemodels of individual animals, e.g.

�shes (Terzopoulos, Tu, & Grzeszczuk 1994). We do not

place too much emphasis on modeling animal or human

behavior, however. Instead, we are trying to develop a

general mechanism for the acquisition of abstract con-

ceptual knowledge, and show how such knowledgemight

be useful to the agent.

Conclusion

The goal of the Neo project is to build a virtual in-

fant that learns many of the cognitive skills that we

expect from a three-year old. Underlying these skills is

a conceptual structure, an ontology, a way to \carve the

world at its joints." This conceptual structure identi�es

classes, and supports judgments of similarity. Follow-

ing Lako�, Johnson, Mandler and others, our position

is that concepts are based in activities. Neo's 
uents

represent objects, states, dependencies and activities.

We believe that they can be extended to learn very ab-

stract and general \physical schemas". We were able to

identify classes by examining Neo's learned activities,

thus providing the �rst evidence from this project that

conceptual structure can be learned by interacting with

the environment.
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