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Abstract

Phoenix is a multi-agent planning system that fights simulated forest fires.  In
this paper we describe an experiment with Phoenix in which we uncover factors
that affect the planner's behavior and test predictions about the planner's
robustness against variations in some of these factors.  We also introduct a
technique – path analysis – for constructing and testing causal explanations of the
planner's behavior.
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1  INTRODUCTION
It is difficult to predict or even explain the behavior of any
but the simplest AI programs.  A program will solve one
problem readily, but make a complete hash of an
apparently similar problem.  For example, our Phoenix
planner, which fights simulated forest fires, will contain
one fire in a matter of hours but fail to contain another
under very similar conditions.  We therefore hesitate to
claim that the Phoenix planner "works." The claim would
not be very informative, anyway: we would much rather
be able to predict and explain Phoenix's behavior in a wide
range of conditions (Cohen 1991).  In this paper we
describe an experiment with Phoenix in which we uncover
factors that affect the planner's behavior and test
predictions about the planner's robustness against
variations in some factors.  We also introduce a tech-
nique—path analysis—for constructing and testing causal
explanations of the planner's behavior.  Our results are
specific to the Phoenix planner and will not necessarily
generalize to other planners or environments, but our tech-
niques are general and should enable others to derive com-
parable results for themselves.

In overview, Section 2 introduces the Phoenix planner;
Section 3 describes an experiment in which we identify
factors that probably influence the planner's behavior; and
Section 4 discusses results and one sense in which the
planner works "as designed."  But these results leave much
unexplained:  although Section 4 identifies some factors
that affect the success and the duration of fire-fighting
episodes, it does not explain how these factors interact.
Section 5 shows how correlations among the factors that
affect behavior can be decomposed to test causal models
that include these factors.

2  PHOENIX OVERVIEW
Phoenix is a multi-agent planning system that fights
simulated forest-fires.  The simulation uses terrain,
elevation, and feature data from Yellowstone National
Park and a model of fire spread from the National Wildlife
Coordinating Group Fireline Handbook (National Wildlife
Coordinating Group 1985).  The spread of fires is
influenced by wind and moisture conditions, changes in
elevation and ground cover, and is impeded by natural and
man-made boundaries such as rivers, roads, and fireline.
The Fireline Handbook also prescribes many of the charac-
teristics of our firefighting agents, such as rates of move-

ment and effectiveness of various firefighting tec
For example, the rate at which bulldozers dig 
varies with the terrain.  Phoenix is a real-time sim
environment—Phoenix agents must think and a
fire spreads. Thus, if it takes too long to decid
course of action, or if the environment changes
decision is being made, a plan is likely to fail.

One Phoenix agent, the Fireboss, coordinates the 
ing activities of all field agents, such as bulldoz
watchtowers.  The Fireboss is essentially a th
agent,1 using reports from field agents to fo
maintain a global assessment of the world.  Ba
these reports (e.g., fire sightings, position upda
progress), it selects and instantiates fire-fighting 
directs field agents in the execution of plan subta

A new fire is typically spotted by a watchtower
reports observed fire size and location to the F
With this information, the Fireboss selects an app
fire-fighting plan from its plan library.  Typical
plans dispatch bulldozer agents to the fire to dig
An important first step in each of the three pla
experiment described below is to decide where
should be dug.  The Fireboss projects the spread o
based on prevailing weather conditions, then con
number of available bulldozers and the proxi
natural boundaries.  It projects a bounding polyg
line to be dug and assigns segments to bulldozers
a periodically updated assessment of which segm
be reached by the spreading fire soonest.  Because
usually many more segments than bulldozer
bulldozer digs multiple segments.  The Fireboss
segments to bulldozers one at a time, then waits
bulldozer to report that it has completed its 
before assigning another.  This ensures that s
assignment incorporates the most up-to-date inf
about overall progress and changes in the prevail
tions.

Once a plan is set into motion, any number of p
might arise that require the Fireboss's intervent
types of problems and mechanisms for handling
described in Howe & Cohen 1990, but one is of p
interest here:  As bulldozers build fireline, the Fir

1 Though it has the same architecture as other agents, 
sensors or effectors and is immobile.  For a detailed descrip
Phoenix agent architecture and planning mechanisms see C
1989.
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compares their progress to expected progress.2  If their
actual progress falls too far below expectations, a plan
failure occurs, and (under the experiment scenario described
here) a new plan is generated.  The new plan uses the same
bulldozers to fight the fire and exploits any fireline that
has already been dug.  We call this error recovery method
replanning.  Phoenix is built to be an adaptable planning
system that can recover from plan failures (Howe &
Cohen 1990).  Although it has many failure-recovery
methods, replanning is the focus of the experiment
described in the next section.

3  IDENTIFYING THE FACTORS
THAT AFFECT PERFORMANCE
We designed an experiment with two purposes.   A con-
firmatory purpose was to test predictions that the planner's
performance is sensitive to some environmental con-
ditions but not others.3  In particular, we expected perfor-
mance to degrade when we change a fundamental relation-
ship between the planner and its environment—the
amount of time the planner is allowed to think relative to
the rate at which the environment changes—and not be
sensitive to common dynamics in the environment such
as weather, and particularly, wind speed. We tested two
specific predictions: 1) that performance would not degrade
or would degrade gracefully as wind speed increased; and 2)
that the planner would not be robust to changes in the
Fireboss's thinking speed due to a bottleneck problem
described below.  An exploratory purpose of the experi-
ment was to identify the factors in the Fireboss architec-
ture and Phoenix environment that most affected the plan-
ner's behavior, leading to the causal model developed in
Section 5.

The Fireboss must select plans, instantiate them, dispatch
agents and monitor their progress, and respond to plan
failures as the fire burns.  The rate at which the Fireboss
thinks is determined by a parameter called the Real Time
Knob. By adjusting the Real Time Knob we allow more
or less simulation time to elapse per unit CPU time,
effectively adjusting the speed at which the Fireboss

2 Expectations about progress are stored in envelopes.  Envelopes
represent the range of acceptable progress, given the knowledge used
to construct the plan.  If actual progress falls outside this range,
envelope violation occurs, invoking error recovery mechanisms
(Cohen,  St. Amant & Hart 1992, Hart, Anderson & Cohen 1990).

3 The term "planner" here refers collectively to all Phoenix
agents, as distinct from the Fireboss agent.

thinks relative to the rate at which the envir
changes.

The Fireboss services bulldozer requests for assig
providing each bulldozer with a task directive for 
fireline segment it builds.  The Fireboss can be
bottleneck when the arrival rate of bulldozer task
is high or when its thinking speed is slowed by a
the Real Time Knob.  This bottleneck sometimes
the overall digging rate to fall below that require
plete the fireline polygon before the fire reaches 
causes replanning (see Section 2).  In the worst
Fireboss bottleneck can cause a thrashing effect 
plan failures occur repeatedly because the Fireb
assign bulldozers during replanning fast enough
the overall digging rate at effective levels.  We d
our experiment to explore the effects of this bottl
system performance and to confirm our predictio
formance would vary in proportion to the manip
thinking speed.  Because the current design of the
is not sensitive to changes in thinking speed, we 
to take longer to fight fires and to fail more o
contain them as thinking speed slows.

In contrast, we expect Phoenix to be able to figh
different wind speeds.  It might take longer and
more area burned at high wind speeds, but we ex
effect to be proportional as wind speed increase
expect Phoenix to succeed equally often at a rang
speeds, since it was designed to do so.

3.1  EXPERIMENT DESIGN

We created a straightforward fire fighting scena
controlled for many of the variables known to a
planner's performance.  In each trial, one fire of
initial size was set at the same location (an area
natural boundaries) at the same time (relative to
of the simulation).  Four bulldozers were used to
The wind's speed and direction were set initially
varied during the trial.  Thus, in each trial, the
receives the same fire report, chooses a fire-fight
and dispatches the bulldozers to implement it.
ends when the bulldozers have successfully surrou
fire or after 120 hours without success.

The experiment's first dependent variable then is
which is true if the fire is contained, and false ot
A second dependent variable is shutdown time (
time at which the trial was stopped.  For successf
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shutdown time tells us how long it took to contain the
fire.4

Two independent variables were wind speed (WS) and the
setting of the Fireboss's Real Time Knob (RTK).  A third
variable, the first plan chosen by the Fireboss in a trial
(FPLAN), varied randomly between trials.  It was not
expected to influence performance, but because it did, we
treat it here as an independent variable.

WS:  The settings of WS in the experiment were 3, 6, and
9 kilometers per hour. As wind speed increases, fire
spreads more quickly in all directions, and most quickly
downwind.  The Fireboss compensates for higher values
of wind speed by directing bulldozers to build fireline fur-
ther from the fire.

RTK:  The default setting of RTK for Phoenix agents al-
lows them to execute 1 CPU second of Lisp code for every
5 minutes that elapses in the simulation.  We varied the
Fireboss's RTK setting in different trials (leaving the set-
tings for all other agents at the default).  We started at a
ratio of 1 simulation-minute/cpu-second, a thinking speed
5 times as fast as the default, and varied the setting over
values of 1, 3, 5, 7, 9, 11, and 15 simulation-
minutes/cpu-second.  These values range from 5 times the
normal speed at a setting of 1 down to one-third the
normal speed at 15.    The values of RTK reported here are
rescaled.  The normal thinking speed (5) has been set to
RTK=1, and the other settings are relative to normal.  The
scaled values (in order of increasing thinking speed ) are
.33, .45, .56, .71, 1, 1.67, and 5.  RTK was set at the
start of each trial and held constant throughout.

FPLAN:  The Fireboss randomly selects one of three
plans as its first plan in each trial.  The plans differ
mainly in the way they project fire spread and decide where
to dig fireline.  SHELL is aggressive, assuming an
optimistic combination of low fire spread and fast
progress on the part of bulldozers.  MODEL is conservative
in its expectations, assuming a high rate of spread and a
lower rate of progress.  The third, MBIA, generally makes
an assessment intermediate with respect to the others.5

4Several other dependent variables were measured, notably Area
Burned. However, using Area Burned to assess performance requires
stricter experimental controls over such factors as choice of fire-
fighting plan than were used here.

5 The first plan of this variety developed in Phoenix was called
Multiple-Bulldozer-Indirect-Attack, or MBIA, which signified a
coordination of bulldozers working at some distance from the fire on
fireline segments determined by the Fireboss's projections.  SHELL is a
variant of MBIA that builds a tighter shell of fireline, thus reducing the
cost of forest burned.  MODEL is another variant of MBIA that applies
an analytical model of fire projection (Cohen 1990). It makes

When replanning is necessary, the Fireboss again
randomly from among the same three plans.6

We adopted a basic factorial design, systematically
the values of WS and RTK.  Because we had not ant
a significant effect of FPLAN, we allowed it to
randomly.

4  RESULTS FOR SUCCESS RATE
AND SHUTDOWN TIME
We collected data for 343 trials, of which 215 su
and 128 failed, for an overall success rate of 63%
1a-c break down successes and failures for each s
the independent variables RTK, WS, and FPLAN.  C
S in these tables is the number of Successes, F
number of Failures, and Tot is the total number
Certain trends emerge in these data that confirm 
predictions.  For example, in Table 1a, the succ
improves steadily as the thinking speed of the 
increases.  However, other patterns are less clear
the differences for each setting of WS in Table 1
do we know if these values are significantly differ
a categorical dependent variable such as Success (

has only two possible values), a chi-square test (

determine whether the observed pattern is sta
significant.

Figures 1a-c show the success rates for each se
each independent variable.  The table categories
and Failure are broken down further into those tr
did not replan and those that did.

conservative projections at the default parameters use
experiment.

6 The same high-level plans can be used in the initial at
fire and on subsequent tries.  When used in replanning, 
adapted to take advantage of any fireline that has already
near the fire.  It is also based on updated conditions such as
size and shape of the fire.
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Figure 1: Successes by a) Real Time Knob, b) Wind Speed, and c) First Plan Tried

4 . 1   E F F E C T  O F  I N D E P E N D E N T
VARIABLES ON SUCCESS

Table 1a shows successes by the independent variable
RTK.  A chi-square test on the Success-Failure x RTK con-
tingency table in Table 1a is highly significant (X2(6) =

49.081, p < 0.001), indicating that RTK strongly influ-
ences the relative frequency of successes and failures. At
the fastest thinking speed for the Fireboss, RTK=5, the
success rate is 98%, but at the slowest rate, RTK=.33, the
success rate is only 33%.  Figure 1a shows graphically
that as RTK goes down (i.e., thinking speed decreases) the
success rate declines.  At RTK=1, the default setting, 63%
of the trials were successful.   Note how rapidly the suc-
cess of the initial plan decreases—for RTK ≤ .45, no trial
succeeds without replanning.  However, the overall
success rate declines more slowly as replanning is used to
recover from the bottleneck effect described in Section 3.
If we compare the rate of success without replanning to
that with replanning in Figure 1a, we see that replanning
buffers the Phoenix planner, allowing it to absorb the
effect of changes in Fireboss RTK without failing. This
effect is statistically highly significant.

Table 1a: Trials Partitioned by Real Time Knob.

RTK S F Tot
. 33 1 0 2 0 3 0
.45 1 4 1 9 3 3
.56 2 2 1 8 4 0
.71 5 4 4 2 9 6
1 2 7 1 6 4 3

1 .67 3 8 1 1 4 9
5 5 0 2 5 2

Table 1b shows successes by wind speed.  The
differences in success are marginal (X2(2) = 5.3

0.069), as we predicted in Section 3.  Figure 1b 
curious trend—as WS increases, the success rate
first plan goes up, while the success rate in
involving replanning diminishes.  The increase in
rate for the first plan occurs because as WS in
Phoenix overestimates the growth of the fire and
more conservative containing fireline.

Table 1b: Trials Partitioned by Wind Speed.

WS S F Tot
3 8 5 3 5 1 2 0
6 6 7 5 0 1 1 7
9 6 3 4 3 1 0 6
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Table 1c shows successes by first plan tried.  Differences
in success are  highly significant (X2(2) = 16.183, p <

0.001), which we had not expected when designing the
experiment.  As shown in Figure 1c, SHELL has a very
low success rate without replanning, reflecting its
aggressive character, while the conservative MODEL has an
initial success rate of 65%.  MBIA's initial success rate is
slightly better than SHELL's (though the difference is not
statistically significant).

Table 1c: Trials Partitioned by First Plan Tried.

FPLAN S F Tot
shell 6 9 6 2 1 3 1
mbia 4 8 3 5 8 3
model 9 8 3 1 1 2 9

4.2  EFFECT OF RTK ON SHUTDOWN TIME

Figure 2 shows the effect of RTK on the dependent vari-
able Shutdown time (SD).  The interesting aspect of this
behavior is the transition at RTK=1.  SD increases gradu-
ally between RTK=5 and 1, and the 95% confidence inter-
vals around the mean values overlap.  Below 1, however,
the slope changes markedly and the confidence intervals
are almost disjoint from those for values above 1.  This
shift in slope and value range for SD suggests a threshold
effect in Phoenix as the Fireboss's thinking speed is
reduced below the normal setting of RTK.  The cost of
resources in Phoenix is proportional to the time spent
fighting fires, so a threshold effect such as this represents
a significant discontinuity in the cost function for
resources used.  For this reason we pursued the cause(s) of
this discontinuity by modeling the effects of the indepen-
dent variables on several key endogenous variables,7 and
through them on SD, with the intent of building a causal
model of the influences on SD.

5 INFLUENCE OF ENDOGENOUS
VARIABLES ON SHUTDOWN TIME
We measured about 40 endogenous variables in the exper-
iment described above, but three are of particular interest
in this analysis: the amount of fireline built by the bull-
dozers (FB), the number of fire-fighting plans tried by the
Fireboss for a given trial (#PLANS), and the overall uti-
lization of the Fireboss's thinking resources (OVUT).

FB: The value of this variable is the amount of fireline
actually built at the end of the trial. FB sets a lower limit

7 A variable is called "endogenous" if it is influenced by
independent variables and influences, perhaps indirectly through other
endogenous variables, dependent variables.

1 2 5

SD

RTK

20

40

60

80

100

Figure 2:  Mean Shutdown Time (in Hours) by Real 
Knob.  Error Bars Show 95% Confidence Intervals.

on SD, because bulldozers have a maximum rate 
they can dig. Thus, when the Fireboss is thinkin
fastest speed and servicing bulldozers with little w
SD will be primarily determined by how much 
must be built.

#PLANS: When a trial ran to completion without r
ning, #PLANS was set to 1.  Each time the Firebo
planned, #PLANS was incremented. #PLANS is an i
tant indicator of the level of difficulty the plan
fighting a particular fire.  It also directly affects
described in Section 2, replanning involves proj
new polygon for the bulldozers to dig.  Typically
polygon is larger than the previous one, because
has now spread to a point where the old one is 
to the fire.  Thus, the amount of fireline to be d
to increase with the number of replanning episod

OVUT: This variable, overall utilization, is the r
the time the Fireboss spends thinking to the total
of a trial.  Thinking activities include monitor
environment and agents' activities, deciding wher
should be dug, and coordinating agents' tasks (Co
1989).  The Fireboss is sometimes idle, havin
everything on its agenda, and so it waits until a
arrives from a field agent or enough time pas
another action becomes eligible.  We expected
OVUT increase as RTK decreases;  that is, as the Fir
thinking speed slows down, it requires a greater an
proportion of the time available to do the cognit
required by the scenario.  Replanning only add
Fireboss's cognitive workload.
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5.1  REGRESSION ANALYSIS

Having identified these variables, we set about quantifying
their effects using multiple regression.8 We regressed SD

on WS, RTK, FPLAN, OVUT, #PLANS and FB.  These fac-
tors accounted for 76% of the variance in SD.  Standardized
beta coefficients are often cited as measures of the relative
influence of factors; in Table 2a they tell us that FB has
the largest influence on SD (beta = .759) , with RTK and
OVUT following close behind.  But if the beta's represent
the strength of influence, they are surprising. OVUT has a
negative influence on SD, which is counterintuitive and
appears to contradict the positive correlation (.42) between
them in Table 2b. WS and #PLANS have virtually no
influence on SD, even though #PLANS is strongly
correlated with SD (.718).  And although WS is essentially
uncorrelated with SD (-.053), it is correlated with FB

(.363), which in turn is strongly correlated with S D

(.755).  Finally, WS and RTK are correlated in Table 2b
(.282), which seems impossible given that they were
varied systematically.  In short, the regression analysis
and the correlation matrix contain counterintuitive entries.
We will see this is because regression is based on an
implicit model, one that almost certainly does not
correspond to the structure of Phoenix.

Table 2a:  Regression For Y: SD on X's:  WS, RTK, FPLAN,
OVUT, #PLANS, FB

B  Beta t statistic of B
WS -2 .564 -0 .261 -5.334 p < .001
RTK -8 .057 -0 .580 -6.503 p < .001

FPLAN .968 .035 .827  p < .283
OVUT - .347 - .438 -4.879  p < .001

#PLANS 3 .411 .115 1.742 p < .088
FB .002 .759 11.641  p < .001

Table 2b:  Correlation Coefficients

WS RTK FPLAN OVUT #PLNS FB
WS 1 .000
RTK .282 1 .000
FPLAN  .117 .151 1 .000
OVUT - .257 - .913 - .016 1 .000
#PLNS - .183  -.409 - .432 .379 1 .000
FB  .363 - .249 - .088 .288  .658 1 .000
SD - .053  -.484 - .193 .420  .718  .755

8 Multiple regression builds a linear model of the effects of any
number of X variables on a continuous  variable Y, which in this case
is SD.  It fits a hyperplane to the data in an n-dimensional space using
the least-squares method, where n = the number of X variables + 1.
One of the measures produced by multiple regression is R2, which is
the percentage of variance accounted for by the linear model.

5.2  PATH ANALYSIS

A technique called path analysis (Asher 1983, Li 1
lets us view correlation coefficients of the varia
Table 2b as sums of hypothesized influences am
tors.  Consider the surprising result that wind sp
is essentially uncorrelated with shut-down time (
expected WS to have two possible effects on SD:

Effect 1.  If WS increases then the fire burns fa
and this means more fireline must be built (i.
increases), which will take longer. Theref
increasing WS should increase SD.

Effect 2. For high wind speeds, if a fire isn't 
tained relatively quickly, then it might not be
tained at all.  For example, if a fire has b
burning for 60 hours or more, and WS = 3, th
probability of the fire being eventually contai
.375. But if WS = 6, the probability of eventu
containing an old fire is only .2, and if WS = 9
probability drops to .13.  We measured SD for
cessful trials only, because, by definition
unsuccessful trial is one that exceeds a specifi
without containing the fires.  But successful 
tainment of old fires is relatively unlikely at h
wind speeds, so as WS increases, we see fewer o
fires contained, thus fewer high values of SD. 
leads us to expect a negative correlation bet
WS and SD.  Note that this correlation represen
effect of missing data, not a true negative c
relationship between WS and SD.

Path analysis enables us to test a model in which

relation rWS SD is composed of Effect 1 and Effect
which cancel each other out.  Consider, for exam
path diagram in Figure 3.  It shows WS positivel
encing the amount of fireline that gets built (FB)
positively influencing SD (we will shortly descri
the numbers are derived). This path, WS→FB→SD,
sponds to Effect 1, above, and is called an indirect e
WS on SD, mediated by FB.  At the same time, W
rectly and negatively influences SD on the path W
corresponding to Effect 2.  Figure 3 shows the str
WS→SD is -.377. The rules of path analysis dicta
the strength of WS→ FB→ SD is the product o
strengths of the constituent links, WS→FB and FB

that is, (.363)(.892) = .328. The estimate 

correlation between WS and SD, √rWS SD , is obtained by
summing the direct and indirect effects, that is
.377 = -0.53.  This is the sum of all legal ways fo
influence SD given the structure in Figure 3.  

model in Figure 3, √rWS SD = rWS SD , but this doesn't
happen in general.
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SD
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.892 
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r       = -.377  + (.363)(.892)  =  -. 053  = r  ^
WS SD WS SD

Figure 3: A Simple Path Diagram Showing Three 
Variables and Their Influences.

Thus we decompose the correlation rWS SD into two addi-
tive effects: WS increases FB as expected and decreases SD

(spuriously, as noted above) as expected, and these effects
cancel.

Path analysis involves three steps:

1) Propose a path model  (such as the one in Figure
3).  The model represents causal influences with
directed arrows (e.g., FB→SD) and correlations with
undirected links (see Figure 4a).

2) Derive path coefficients (such as -.377, .363 and
.892). The magnitude of a path coefficient is inter-
preted as a measure of causal influence.

3) Estimate the strength of the relationship between
two factors (such as WS and SD) by multiplying
path coefficients along paths between the factors
and summing the products over all legal paths
between the factors.

Step 3 is entirely algorithmic given some simple rules
(described below) that define legal paths. Step 2 involves
some judgment because some models allow multiple ways
to derive one or more path coefficients.  A model is a con-
cise statement of hypothesized causal influences among
factors, and the space of models grows combinatorially
with the number of factors, so step 1,  proposing a model,
is apt to benefit from knowledge about the system we are
modeling.9

All three steps will be clearer if we briefly describe the
relationship between multiple linear regression and path
analysis.  They are basically the same thing: both derive
path coefficients for a model. The difference is simply that
one particular model is implicit in multiple regression.
Consider an elaboration of Figure 3, in which we add the

9 Pearl and Verma are developing efficient algorithms, related to
path analysis, for causal induction (Pearl & Verma 1991).

RTK as an additional causal influence on SD. Fig
shows the implicit model fit by multiple regress
Figure 4b shows a model that we think is a bette
sentation of what is actually going on in Phoenix

The regression model assumes that all predictor 
(WS, FB, RTK) are correlated, and assumes all d
influence the criterion variable (SD).  Correlated 
are linked by undirected paths, which are labeled
correlations. Table 2b presents the correlation
derived from our experiment.  Multiple regressio
ates standard partial regression (beta) coefficient
direct path between the predictor and criterion 
These are -.291, .81 and -.2 in Figure 4a.  Each re
a standardized measure of the influence of one 
variable on the criterion variable with the effec
other predictor variables held constant.  The r

regression equation in standard format is  SD^ = .81 FB -
.29 WS - .2 RTK. Because the regression coefficien
standardized they can be compared: a unit chan
produces .81 units change in SD, whereas a unit c
WS produces -.29 units change in SD.  FB is the s
influence.

Figure 4a represents a decomposition of the cor
between SD and the other variables. The correlat
be reconstituted by summing the influences alo
just as we did in Figure 3.  Path analysis has thr
for identifying paths:

1) No more than one undirected link can be pa
path (e.g., F B→ R T K→ S D  is legal, but
WS→FB→RTK→SD isn't)

2) A path cannot go through a node twice.

3) A path can go backward on a directed link, b
after it has gone forward on another link 
F B← W S → S D  in Figure 4b is legal but
#PLANS→FB←WS in Figure 5 isn't).

The strength of each multilink path is just the p
its constituent coefficients, so the strength of t
FB→RTK→SD in Figure 4a is (-.249)(-.2) = .0498.
estimated correlation between a predictor and a
variable is the sum of the strengths of the paths
nect them. Thus

√rFB SD =.755 = .81 direct FB→SD path

+ (.363)(-.291) FB→WS→SD 
+ (-.249)(-.2) FB→RTK→SD

So multiple regression follows the three steps 
analysis. First, propose a model, specifically, a mo
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Figure 4:  A Shows the Path Model Implicit in Multiple Regression.  The Path Model in B
Better Captures the Relationships Among These Variables in Phoenix.

which all predictor variables are correlated and directly
linked to the criterion. Second, estimate path coefficients,
specifically, calculate standard partial regression coeffi-
cients for the direct paths between predictor and criterion
variables, and label the undirected links with the appropri-
ate correlations. Third, estimate the correlations between
each predictor and criterion variable by identifying legal
paths between them, calculating the strength of each path,
and summing the path strengths.  In multiple regression,
the estimated correlations are always identical to the actual
correlations.

Multiple regression is a fine way to decompose correla-
tions into their component influences if you believe that
multiple regression's implicit causal model represents
your system.  Multiple regression is just path analysis on
this implicit model, so if you don't believe the model you
can propose another and run path analysis on it.  This is
what we did in Figure 4b.  We know that WS and RTK are
independent because our experiment varied them indepen-
dently in a factorial design. (The reason they are correlated
is the sampling bias identified as effect 2, above.) So we
want to test a model in which WS influences SD directly
and through FB, and RTK influences SD directly.  The only
question is how to estimate the path coefficients.  The
basic rules, which yield the coefficients in Figure 4b, are:

1) If W and X are uncorrelated causes of the criterion
variable Y, then the path coefficients ρYX and ρYW

are just the correlation coefficients rYX and rYW,
respectively.

2) If W and X are correlated causes of the criterion
variable Y, then the path coefficients ρYX and ρYW

are the standard partial regression coefficients b'YX •

W and b'YW • X , respectively, obtained from the
regression of Y on X and W.

Is Figure 4b a better model than Figure 4a?  W
answer the question in two ways.  The statistica
is that no model fits the data better, in te
accounting for variance in the criterion variable
regression model.  But this is hardly surprising w
consider that the regression model assumes ev
influences everything else.  The system analyst's
is that we don't want models in which ever
influences everything else: we want models in
some links are left out, in which causal influen
localized, not dissipated through a network of cor
Let's ask, then, what it means for one such mod
better than another. Again, the judgment depend
well each accounts for the variance in the criterio
and how accurately each estimates the correlation
variables, and, how well each represents what we
to be the causal structure of our system.  Clear
criteria interact. We can imagine a model that fits
well but cannot represent what we know  to be th
structure, but often we explore different plausib
structures by seeing how well each fits the data.

The structure in Figure 5 represents one of o
guesses at the causal structure that relates WS, FP

RTK to SD.  We expected WS and FPLAN to each di
influence both #PLANS and FB, but neither to d
influence SD.  We also expected RTK to influence #
and SD directly.  We thought #PLANS might influe
and SD.  We made these guesses based on regressi
yses, the correlation matrix in Table 2b, some
graphs shown earlier, and our general knowled
how the Phoenix planner works.

After estimating the path coefficients as shown i

5, we estimated the correlations √rSDi  between SD and each



Predicting and Explaining Success in Phoenix Hart and Cohen

9

variable i. The estimates and the actual correlations are as
follows:

WS FPLAN RTK #PLANS FB

√rSDi
. 118 - .197 - .533 .719 .778

rSDi
- .053 - .193 - .484 .718 .755

RTK

#PLANS 

FB

WS

FPLAN

SD-.183

.491

-.432

 .219

.843

-.409
-.241

.287

.506

Figure 5: Path Model Relating Variables Influencing 
Shutdown Time.

Except for the disparity between the estimated and actual
correlations between WS and SD, this model accounts
pretty well for the actual correlations.  At this point, we
wanted to explain the influence of RTK on #PLANS.
Why should decreasing RTK (slowing the Fireboss's
thinking speed) increase the number of plans?  One
explanation is something like thrashing:  There is always
the possibility that the environment will change in such a
way that a plan is no longer appropriate, but this is much
more likely when the environment changes rapidly relative
to planning effort (i.e., when RTK is decreased).  Thus,
decreasing RTK means the Fireboss will have to throw

�

  

-.183

.491

-.432

 .219

.843

-.241

.287

.506

RTK

#PLANS 

FB

WS

FPLAN

SD

OVUT
.379

-.913

Figure 6:  Adding the Endogenous Variable OVUT.

away plans before they make much progress, res
an increase in #PLANS.  To test this we intro
another variable, OVUT, which measures the per
of time in a trial that the Fireboss spends plann
expected OVUT to decrease with RTK, supporti
thrashing explanation.  Figure 6 shows a modific
Figure 5, with the path RTK→OVUT→#PLANS instea
RTK→#PLANS.

For this model, estimated correlations between SD

the other variables are not appreciably different
were for the model in Figure 5.  But it appears 
variable OVUT does not add much to our understa
thrashing, because it is completely determined 
Consider what happens when we derive path coe
for a slightly different model (Figure 7).  In th

OVUT has almost no influence (rOVUT #PLANS  = .032) on
#PLANS.  Recall, however, that this path coefficien
standardized partial regression coeffi

′bOVUT #PLANS•RTK
; that is, the effect of OVUT on #PLA

with RTK held constant. The fact that this num
nearly zero means that OVUT has no effect on #
when RTK is held constant; in other words, the effect 
OVUT on #PLANS is due entirely to RTK.

RTK

OVUT
 .032

-.913

 
-.380

#PLANS 

• • • 

• • • • • • 

• • • 
• • • 

Figure 7:  Showing the Effect of OVUT on #PLANS is Du
Entirely to RTK.

6  CONCLUSION
We have presented results of an experiment w
Phoenix planner that confirm our predictions th
formance would be sensitive to some environmen
tions but not others.  We have shown that the p
not sensitive to variation in initial wind speed, a
environmental dynamic it faces.  On the other h
results show that performance degrades as we c
fundamental relationship between the planner an
ronment–the rate at which the Fireboss agent th
we slowed the Fireboss's thinking speed in the ex
by decreasing RTK, performance degraded to th
where no plan succeeded on the first try.  Howe
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planner was still able to succeed in many cases by replan-
ning.  While the success rate using replanning also
degrades, replanning acts as a buffer, preventing the plan-
ner from failing catastrophically when it can't think fast
enough to keep up with the environment.  The data also
show that replanning exerts a large influence on SD. We
have presented a causal model, developed using path anal-
ysis, of the effects on SD of the various independent and
endogenous variables we measured.

Replanning occurs when the environment doesn't match
the Fireboss's expectations. In the current experiment, the
rate at which the expectations became invalid was set by
RTK. But the effect was indirect: Low RTK ensured that
the Fireboss would be swamped (OVUT), which meant that
bulldozers had to wait for instructions, which, in turn,
increased the probability that they would not be able to
carry out their instructions by their deadlines. This is what
caused plans to fail. Environmental changes were only the
instrument of the problem; RTK initiated it. But expecta-
tions, and thus plans, can also fail if the environment
itself changes.  We have yet to study whether replanning
makes Phoenix robust against these changes, though our
results with RTK suggest it does.
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